In the present paper it is proved that a variety of associative PI-superalgebras with graded involution of finite basic rank over a field of characteristic zero is minimal of fixed *-graded exponent if, and only if, it is generated by a subalgebra of an upper block triangular matrix algebra equipped with a suitable elementary ℤ2-grading and graded involution.

Minimal varieties of PI-superalgebras with graded involution

Di Vincenzo O. M.
;
2021-01-01

Abstract

In the present paper it is proved that a variety of associative PI-superalgebras with graded involution of finite basic rank over a field of characteristic zero is minimal of fixed *-graded exponent if, and only if, it is generated by a subalgebra of an upper block triangular matrix algebra equipped with a suitable elementary ℤ2-grading and graded involution.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/153025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 11
social impact