Macrophage stimulation by pathogen-associated molecular patterns (PAMPs) like lipopolysaccharide (LPS) or lipoteichoic acid (LTA) drives a proinflammatory phenotype and induces a metabolic reprogramming to sustain the cell’s function. Nevertheless, the relationship between metabolic shifts and gene expression remains poorly explored. In this context, the metabolic enzyme ATP citrate lyase (ACLY), the producer of citrate-derived acetyl-coenzyme A (CoA), plays a critical role in supporting a proinflammatory response. Through immunocytochemistry and cytosol-nucleus fractionation, we found a short-term ACLY nuclear translocation. Protein immunoprecipitation unveiled the role of nuclear ACLY in NF-κB acetylation and in turn its full activation in human PBMC-derived macrophages. Notably, sepsis in the early hyperinflammatory phase triggers ACLY-mediated NF-κB acetylation. The ACLY/NF-κB axis increases the expression levels of proinflammatory genes, including SLC25A1—which encodes the mitochondrial citrate carrier—and ACLY, thus promoting the existence of a proinflammatory loop involving SLC25A1 and ACLY genes.

ACLY nuclear translocation in human macrophages drives proinflammatory gene expression by NF-κB acetylation

Convertini P.
Conceptualization
;
Todisco S.
Writing – Original Draft Preparation
;
Infantino V.
Writing – Review & Editing
2021-01-01

Abstract

Macrophage stimulation by pathogen-associated molecular patterns (PAMPs) like lipopolysaccharide (LPS) or lipoteichoic acid (LTA) drives a proinflammatory phenotype and induces a metabolic reprogramming to sustain the cell’s function. Nevertheless, the relationship between metabolic shifts and gene expression remains poorly explored. In this context, the metabolic enzyme ATP citrate lyase (ACLY), the producer of citrate-derived acetyl-coenzyme A (CoA), plays a critical role in supporting a proinflammatory response. Through immunocytochemistry and cytosol-nucleus fractionation, we found a short-term ACLY nuclear translocation. Protein immunoprecipitation unveiled the role of nuclear ACLY in NF-κB acetylation and in turn its full activation in human PBMC-derived macrophages. Notably, sepsis in the early hyperinflammatory phase triggers ACLY-mediated NF-κB acetylation. The ACLY/NF-κB axis increases the expression levels of proinflammatory genes, including SLC25A1—which encodes the mitochondrial citrate carrier—and ACLY, thus promoting the existence of a proinflammatory loop involving SLC25A1 and ACLY genes.
2021
File in questo prodotto:
File Dimensione Formato  
49. 2021 Cells-ACLY.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF Visualizza/Apri
Supplementary_Material.pdf

accesso aperto

Descrizione: Supplementary Material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 2.67 MB
Formato Adobe PDF
2.67 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/152766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact