Key message: Juglans, Fraxinus, Quercus and Pinus species seem to better maximize the carbon–water ratio providing useful indications on species selection for forestry plantations in areas with increasing drought risk. Abstract: Maximizing carbon sequestration for a given water budget is extremely important in the contest of climate change in the Mediterranean region, which is characterized by increasing temperatures and rising water stress. This issue is fundamental for plantation stands, where limited water availability during the growing season reduces CO2 assimilation and, consequently, tree growth. In this study, the main objective was to investigate the performances in terms of carbon–water balance of conifer (Pinus halepensis and Cupressus sempervirens) and hardwood (Quercus robur, Juglans regia, Fraxinus excelsior and Populus spp.) mixed plantations. To this aim, we used carbon isotope signatures to evaluate the intrinsic water-use efficiency (iWUE) and the species-specific relationship between basal area increments (BAI) and iWUE. At the species level, the highest iWUE values corresponded to the lowest carbon accumulation in terms of BAI, for water-saving species such as Cupressus. Conversely, Populus had the lowest iWUE and the highest BAI accumulation. Juglans, Fraxinus, and Pinus showed the most balanced ratio between BAI and iWUE. Overall, no clear correlation of iWUE and BAI was evident within all species, except for Populus and Cupressus. Considering projected aridification and increased temperatures that will negatively impact the growth, our data suggest that Pinus, for conifers, and Quercus, Juglans, Fraxinus for hardwood species should be preferred when choosing species for forestry plantation, as they performed better in terms of BAI and iWUE ratio.

Evaluating growth and intrinsic water-use efficiency in hardwood and conifer mixed plantations

Gentilesca T.
;
Borghetti M.;Colangelo M.;Altieri S.;Ferrara A. M. S.;Lapolla A.;Rita A.;Ripullone F.;COLANGELO, MICHELE
2021-01-01

Abstract

Key message: Juglans, Fraxinus, Quercus and Pinus species seem to better maximize the carbon–water ratio providing useful indications on species selection for forestry plantations in areas with increasing drought risk. Abstract: Maximizing carbon sequestration for a given water budget is extremely important in the contest of climate change in the Mediterranean region, which is characterized by increasing temperatures and rising water stress. This issue is fundamental for plantation stands, where limited water availability during the growing season reduces CO2 assimilation and, consequently, tree growth. In this study, the main objective was to investigate the performances in terms of carbon–water balance of conifer (Pinus halepensis and Cupressus sempervirens) and hardwood (Quercus robur, Juglans regia, Fraxinus excelsior and Populus spp.) mixed plantations. To this aim, we used carbon isotope signatures to evaluate the intrinsic water-use efficiency (iWUE) and the species-specific relationship between basal area increments (BAI) and iWUE. At the species level, the highest iWUE values corresponded to the lowest carbon accumulation in terms of BAI, for water-saving species such as Cupressus. Conversely, Populus had the lowest iWUE and the highest BAI accumulation. Juglans, Fraxinus, and Pinus showed the most balanced ratio between BAI and iWUE. Overall, no clear correlation of iWUE and BAI was evident within all species, except for Populus and Cupressus. Considering projected aridification and increased temperatures that will negatively impact the growth, our data suggest that Pinus, for conifers, and Quercus, Juglans, Fraxinus for hardwood species should be preferred when choosing species for forestry plantation, as they performed better in terms of BAI and iWUE ratio.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/151365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact