Chimeric plant viruses are emerging as promising vectors for use in innovative vaccination strategies. In this context, cucumber mosaic virus (CMV) has proven to be a suitable carrier of the hepatitis C virus (HCV)-derived R9 mimotope. In the present work, a new chimeric CMV, expressing on its surface the HCV-derived R10 mimotope, was produced but lost the insert after the first passage on tobacco. A comparative analysis between R10- and R9-CMV properties indicated that R9-CMV stability was related to structural features typical of the foreign insert. Thus, in order to combine high virus viability with strong immuno-stimulating activity, we doubled R9 copies on each of the 180 coat protein (CP) subunits of CMV. One of the chimeras produced by this approach (2R9-CMV) was shown to systemically infect the host, stably maintaining both inserts. Notably, it was strongly recognized by sera of HCV-infected patients and, as compared with R9-CMV, displayed an enhanced ability to stimulate lymphocyte IFN-g production. The high immunogen levels achievable in plants or fruits infected with 2R9-CMV suggest that this chimeric form of CMV may be useful in the development of oral vaccines against HCV.
Cucumber mosaic virus as a presentation system of a double hepatitis c virus-derived epitope.
NUZZACI, Maria;VITTI, ANTONELLA;PIAZZOLLA, Pasquale
2007-01-01
Abstract
Chimeric plant viruses are emerging as promising vectors for use in innovative vaccination strategies. In this context, cucumber mosaic virus (CMV) has proven to be a suitable carrier of the hepatitis C virus (HCV)-derived R9 mimotope. In the present work, a new chimeric CMV, expressing on its surface the HCV-derived R10 mimotope, was produced but lost the insert after the first passage on tobacco. A comparative analysis between R10- and R9-CMV properties indicated that R9-CMV stability was related to structural features typical of the foreign insert. Thus, in order to combine high virus viability with strong immuno-stimulating activity, we doubled R9 copies on each of the 180 coat protein (CP) subunits of CMV. One of the chimeras produced by this approach (2R9-CMV) was shown to systemically infect the host, stably maintaining both inserts. Notably, it was strongly recognized by sera of HCV-infected patients and, as compared with R9-CMV, displayed an enhanced ability to stimulate lymphocyte IFN-g production. The high immunogen levels achievable in plants or fruits infected with 2R9-CMV suggest that this chimeric form of CMV may be useful in the development of oral vaccines against HCV.File | Dimensione | Formato | |
---|---|---|---|
Nuzzaci2007.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
541.59 kB
Formato
Adobe PDF
|
541.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.