We study the sublaplacian $\Delta_b$ on a strictly pseudoconvex CR manifold endowed with a contact form. $\Delta_b$ is approximated by a continuous family of second order elliptic operators $\{ \Delta_\epsilon\}_{\epsilon>0}$. If $\{\Delta_\epsilon\}_{\epsilon>0}$ is uniformly K-positive definite (in the sense of W.V. Petryshyn) then we produce generalized solutions to $\Delta_b u = f$.
Sublaplacians on CR manifolds
BARLETTA, Elisabetta;DRAGOMIR, Sorin
2009-01-01
Abstract
We study the sublaplacian $\Delta_b$ on a strictly pseudoconvex CR manifold endowed with a contact form. $\Delta_b$ is approximated by a continuous family of second order elliptic operators $\{ \Delta_\epsilon\}_{\epsilon>0}$. If $\{\Delta_\epsilon\}_{\epsilon>0}$ is uniformly K-positive definite (in the sense of W.V. Petryshyn) then we produce generalized solutions to $\Delta_b u = f$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Sublaplacians on CR manifolds.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
293.26 kB
Formato
Adobe PDF
|
293.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.