Environmental isotope techniques, hydrogeochemical analysis and hydraulic data are employed to identify the main recharge areas of the Mt. Vulture hydrogeological basin, one of the most important aquifers of southern Italy. The groundwaters are derived from seepage of rainwater, flowing from the highest to the lowest elevations through the shallow volcanic weathered host-rock fracture zones. Samples of shallow and deep groundwater were collected at 48 locations with elevations ranging from 352 to 1,100 m above sea level (a.s.l.), for stable isotope (δ18O, δD) and major ion analyses. A complete dataset of available hydraulic information has been integrated with measurements carried out in the present study. Inferred recharge elevations, estimated on the basis of the local vertical isotopic gradient of δ18O, range between 550 and 1,200 m a.s.l. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different recharge sources. Knowledge of the local hydrogeological setting was the starting point for a detailed hydrogeochemical and isotopic study to define the recharge and discharge patterns identifying the groundwater flow pathways of the Mt. Vulture basin. The integration of all the data allowed for the tracing of the groundwater flows of the Mt. Vulture basin.

Groundwater recharge areas of a volcanic aquifer system inferred from hydraulic, hydrogeochemical and stable isotope data: Mount Vulture, southern Italy.

PATERNOSTER, Michele;SPILOTRO, Giuseppe;MONGELLI, Giovanni
2011-01-01

Abstract

Environmental isotope techniques, hydrogeochemical analysis and hydraulic data are employed to identify the main recharge areas of the Mt. Vulture hydrogeological basin, one of the most important aquifers of southern Italy. The groundwaters are derived from seepage of rainwater, flowing from the highest to the lowest elevations through the shallow volcanic weathered host-rock fracture zones. Samples of shallow and deep groundwater were collected at 48 locations with elevations ranging from 352 to 1,100 m above sea level (a.s.l.), for stable isotope (δ18O, δD) and major ion analyses. A complete dataset of available hydraulic information has been integrated with measurements carried out in the present study. Inferred recharge elevations, estimated on the basis of the local vertical isotopic gradient of δ18O, range between 550 and 1,200 m a.s.l. The isotope pattern of the Quaternary aquifer reflects the spatial separation of different recharge sources. Knowledge of the local hydrogeological setting was the starting point for a detailed hydrogeochemical and isotopic study to define the recharge and discharge patterns identifying the groundwater flow pathways of the Mt. Vulture basin. The integration of all the data allowed for the tracing of the groundwater flows of the Mt. Vulture basin.
2011
File in questo prodotto:
File Dimensione Formato  
HJ2011.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 2.19 MB
Formato Adobe PDF
2.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/15060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact