A new proof will be given for the following result originally stated in (Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974) 541): Let $K$ be a complete $k$-arc in $PG(2,q)$, $q$ odd, containing $(q+3)/2$ points from an irreducible conic $mathcal{C}$ of $PG(2,q)$. If $(q+1)/2$ is a prime, then $K$ contains at most four points outside $mathcal{C}$. If $q^2equiv 1 (mathrm{mod} 16)$, then this number can be at most two.
Complete arcs arising from conics
KORCHMAROS, Gabor;SONNINO, Angelo
2003-01-01
Abstract
A new proof will be given for the following result originally stated in (Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974) 541): Let $K$ be a complete $k$-arc in $PG(2,q)$, $q$ odd, containing $(q+3)/2$ points from an irreducible conic $mathcal{C}$ of $PG(2,q)$. If $(q+1)/2$ is a prime, then $K$ contains at most four points outside $mathcal{C}$. If $q^2equiv 1 (mathrm{mod} 16)$, then this number can be at most two.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DM_267.pdf
non disponibili
Descrizione: Articolo
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
2.87 MB
Formato
Adobe PDF
|
2.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.