A new proof will be given for the following result originally stated in (Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974) 541): Let $K$ be a complete $k$-arc in $PG(2,q)$, $q$ odd, containing $(q+3)/2$ points from an irreducible conic $mathcal{C}$ of $PG(2,q)$. If $(q+1)/2$ is a prime, then $K$ contains at most four points outside $mathcal{C}$. If $q^2equiv 1 (mathrm{mod} 16)$, then this number can be at most two.

Complete arcs arising from conics

KORCHMAROS, Gabor;SONNINO, Angelo
2003-01-01

Abstract

A new proof will be given for the following result originally stated in (Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974) 541): Let $K$ be a complete $k$-arc in $PG(2,q)$, $q$ odd, containing $(q+3)/2$ points from an irreducible conic $mathcal{C}$ of $PG(2,q)$. If $(q+1)/2$ is a prime, then $K$ contains at most four points outside $mathcal{C}$. If $q^2equiv 1 (mathrm{mod} 16)$, then this number can be at most two.
2003
File in questo prodotto:
File Dimensione Formato  
DM_267.pdf

non disponibili

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/15055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact