An arc of size $k$ (briefly: a $k$-arc) in an inversive plane is defined as a set consisting of $k$ points no four of which lie on the same circle. An infinite family of large $k$-arcs in the inversive plane $\mathcal{M}(q)$ over a finite field $\mathrm{GF}(q)$, with $q\equiv 1\pmod{3}$ is constructed.
Large $k$-arcs in inversive planes of odd order
SONNINO, Angelo
1999-01-01
Abstract
An arc of size $k$ (briefly: a $k$-arc) in an inversive plane is defined as a set consisting of $k$ points no four of which lie on the same circle. An infinite family of large $k$-arcs in the inversive plane $\mathcal{M}(q)$ over a finite field $\mathrm{GF}(q)$, with $q\equiv 1\pmod{3}$ is constructed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JGeom_66.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
234.28 kB
Formato
Adobe PDF
|
234.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.