The theory of $k$-arcs plays an important role in the study of Steiner triple systems, designs, and Benz planes (namely, Mö́bius, Laguerre and Minkowski planes). We investigate linear collineation groups of a M\"{o}bius plane of odd order $q$ which preserve an arc. It turns out that such a group is either dihedral or cyclic, provided that $q$ is not a power of $3$.
Linear collineation groups preserving an arc in a M\"{o}bius plane
SONNINO, Angelo
1999-01-01
Abstract
The theory of $k$-arcs plays an important role in the study of Steiner triple systems, designs, and Benz planes (namely, Mö́bius, Laguerre and Minkowski planes). We investigate linear collineation groups of a M\"{o}bius plane of odd order $q$ which preserve an arc. It turns out that such a group is either dihedral or cyclic, provided that $q$ is not a power of $3$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DM_197_198.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
3.95 MB
Formato
Adobe PDF
|
3.95 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.