Hand tracking is an essential component of computer graphics and human-computer interaction applications. The use of RGB camera without specific hardware and sensors (e.g., depth cameras) allows developing solutions for a plethora of devices and platforms. Although various methods were proposed, hand tracking from a single RGB camera is still a challenging research area due to occlusions, complex backgrounds, and various hand poses and gestures. We present a mobile application for 2D hand tracking from RGB images captured by the smartphone camera. The images are processed by a deep neural network, modified specifically to tackle this task and run on mobile devices, looking for a compromise between performance and computational time. Network output is used to show a 2D skeleton on the user's hand. We tested our system on several scenarios, showing an interactive hand tracking level and achieving promising results in the case of variable brightness and backgrounds and small occlusions.

A Preliminary Investigation into a Deep Learning Implementation for Hand Tracking on Mobile Devices

M. Gruosso;N. Capece;U. Erra
;
2020-01-01

Abstract

Hand tracking is an essential component of computer graphics and human-computer interaction applications. The use of RGB camera without specific hardware and sensors (e.g., depth cameras) allows developing solutions for a plethora of devices and platforms. Although various methods were proposed, hand tracking from a single RGB camera is still a challenging research area due to occlusions, complex backgrounds, and various hand poses and gestures. We present a mobile application for 2D hand tracking from RGB images captured by the smartphone camera. The images are processed by a deep neural network, modified specifically to tackle this task and run on mobile devices, looking for a compromise between performance and computational time. Network output is used to show a 2D skeleton on the user's hand. We tested our system on several scenarios, showing an interactive hand tracking level and achieving promising results in the case of variable brightness and backgrounds and small occlusions.
2020
978-172817463-1
File in questo prodotto:
File Dimensione Formato  
A preliminary.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 585.18 kB
Formato Adobe PDF
585.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/147531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact