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Abstract—Hand tracking is an essential component of com-
puter graphics and human-computer interaction applications.
The use of RGB camera without specific hardware and sen-
sors (e.g., depth cameras) allows developing solutions for a
plethora of devices and platforms. Although various methods
were proposed, hand tracking from a single RGB camera is
still a challenging research area due to occlusions, complex
backgrounds, and various hand poses and gestures. We present
a mobile application for 2D hand tracking from RGB images
captured by the smartphone camera. The images are processed
by a deep neural network, modified specifically to tackle this task
and run on mobile devices, looking for a compromise between
performance and computational time. Network output is used to
show a 2D skeleton on the user’s hand. We tested our system
on several scenarios, showing an interactive hand tracking level
and achieving promising results in the case of variable brightness
and backgrounds and small occlusions.

Index Terms—Deep Learning, Human-Computer Interaction,
Image Processing, Hand Tracking

I. INTRODUCTION

The ability to perceive the position or movement of hands in

space is an important activity to improve the user experience

in a multiplicity of domains and technological platforms. For

example, it can be the basis for understanding sign language

[1] or recognizing gestures [2]. Hand tracking can be useful

in human-computer interaction [3]–[5], VR/AR [6], [7], and

robotics applications [8], [9]. The hand tracking problem

consists of estimating the hand’s position in the image or

the 3D space. It can be performed by directly estimating

its joints or using a model that produces probability density

maps (heatmaps) for each joint [10]. Traditional approaches

are based on markers, gloves, depth sensors, additional and

specific hardware setup [11]–[13]. In recent years, several

approaches based on deep learning have been developed,

considering the impressive results obtained in particular for

classification, detection, and regression tasks related to images

[14]–[20]. Many of them propose markerless and image-based

methods, but still require multiple [21], [22] and depth [23],

[24] cameras. Since RGB cameras are widely available and

inexpensive, the most recent works are based on a single

monocular RGB input image without the need for supplemen-

tary information [25], [26]. Despite scientific and technolog-

ical progress in this field, accurate hand tracking from RGB

camera inputs is still challenging. Input size reduction makes

the task more difficult. In addition, an incorrect estimate can

be caused by hand occlusion, different or noisy backgrounds,

and variable lighting conditions.

This paper focuses on 2D hand tracking in image-space

from RGB inputs acquired by a smartphone camera. We

designed a mobile app in which images are processed by

a neural network to obtain 2D joint heatmaps. The output

is post-processed to derive a 2D skeleton and interactively

display it on the user’s hand (Fig. 1). All computation, net-

work loading, and inference are performed on devices locally.

The network used is a deep convolutional model based on

RegNet [26], which was developed for real-time hand tracking

from monocular RGB images and achieved impressive results

on desktop hardware. Since it was not created as a specific

lightweight model for mobile or embedded devices, we sought

a compromise between accurate predictions and computational

time, modifying the baseline model at inference time. There-

fore, we tested the proposed neural network on a desktop

device, obtaining good performance at the inference phase

and reducing computational times by 0.04 seconds on average

for each frame compared to the RegNet baseline model.

Hands were captured in different positions, with different

backgrounds, variable brightness, and small self occlusions or

caused by objects. Finally, we tested our app and calculated

the inference times by comparing different devices. Promising

results were obtained on a high-end smartphone that achieved

around 18 fps, showing interactive hand tracking.

The remainder of this paper is structured as follows:

Section II provides an overview of several interesting ap-

proaches related to RGB images; Section III describes the

neural network model; Section IV describes the design and

implementation of our app; Section V illustrates the result

obtained and the experiments conducted; Section VI presents

final considerations and future directions.
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Fig. 1. An intuitive graphical user interface was designed. In particular, users
can see a red square bounding box indicating the center crop area. Frames are
continuously captured and processed on the fly by the neural network running
locally on mobile devices. The output is shown through a 2D hand skeleton
that interactively overlaps the hand.

II. RELATED WORK

Hand tracking from RGB images is a very active re-

search field, especially due to the numerous and important

applications. In addition, there are open and still unresolved

challenges due to similarities among fingers, significant self-

occlusions and object occlusions, different background colors,

and complexity of hand pose, shape, and gesture [10].

In this section, we discuss some interesting methods re-

garding RGB images that require additional data to improve

accuracy or a multi-camera setup. Finally, we explore some

approaches based on a single monocular RGB camera.

A. Methods based on RGB images and additional data

One of the most interesting traditional methods was devel-

oped by Sridhar et al. [27], which proposed a hybrid approach

for interactive hand motion tracking. They combined RGB

images captured from multiple cameras, depth sensor data, and

a user-specific hand model to estimate the 3D hand pose. The

advantages of the fusion of RGB and depth data were further

investigated by Kazakos et al. [28]. Indeed, they built a double-

stream deep convolutional neural network that analyzed depth

and RGB images in parallel and fused their features at an

intermediate layer. In the last years, weakly supervised deep

learning approaches were developed. In particular, Cai et
al. [29] presented a method that takes advantage of the

depth map information acquired by an RGB-D camera during

training, while only RGB inputs were used during the test

phase. Similarly, Dibra et al. [30] and Ge et al. [31] proposed

to fine-tune the networks on real monocular data by leveraging

the depth map in the training step to enhance estimation

accuracy.

B. Methods based on a multi-camera setup

Another method developed by Sridhar et al. [32] employed

5 RGB cameras and hand shape representation in 3D based on

a sum of anisotropic Gaussians. Simon et al. [21] presented a

hand keypoint detector trained using the Panoptic Studio [33]

that contains more than 500 cameras in a spherical space. They

trained a weak detector on a small synthetic hands dataset to

localize a subset of keypoints using some views. Secondly,

a triangulation phase was performed using the position and

parameters of all cameras to filter incorrect detections and

obtain accurate 3D estimations.

C. Methods based on a single monocular RGB camera

Several deep learning approaches based on a single RGB

image were proposed. Zimmermann et al. [25] developed a

three-step pipeline for estimating 3D hand joints using a single

RGB image. Firstly, hand segmentation was performed using

a convolutional neural network called HandSegNet. Then a

detection-based network, PoseNet, produced 2D heatmaps.

Finally, a third network named PosePrior predicted relative

and normalized 3D coordinates, which were used to obtain the

3D pose estimation anchored on the palm center. Panteleris et
al. [34] also proposed a method consisting of three phases:

hand detection using YOLOv2 neural network [35]; 2D key-

points localization following the approach illustrated in [21];

and the absolute 3D pose estimation from 2D keypoints using

inverse kinematics. Contrary to the previous works, others

were based on two phases. In particular, Wang et al. [36]

designed a cascaded convolutional network to estimate hand

mask and 2D pose, while Iqbal et al. [37] presented a method

for 3D hand pose reconstruction from 2.5D heatmaps esti-

mated from a monocular image using a convolutional network.

Finally, Mueller et al. [26] proposed a deep convolutional

model, called RegNet, able to estimate 2D and 3D hand joints

from a single RGB image followed by a refinement module,

providing a robust hand tracking system and outperforming

several methods, such as [25].

III. NEURAL NETWORK ARCHITECTURE

Our neural network is based on RegNet [26], which is a real-

time hand joints regressor. RegNet was trained to predict 2D

joint heatmaps and 3D joint positions from a square RGB-only

image. The authors demonstrated that the network benefits

from jointly regressing both 2D and 3D joints at training time.

The first part of RegNet is composed of 10 residual blocks

of the ResNet50 model [38] followed by two branches: one

consisting of convolutional and deconvolutional layers and the

other consisting of fully connected layers. These two branches

provide 2D and 3D hand joints predictions, respectively. The

second part of RegNet is a refinement module built to better

couple 2D and 3D predictions. In particular, a custom layer

called projection layer was designed to orthogonally project

the intermediate 3D predictions obtained from the first part of

the network.

A large amount of data is usually needed to train this type

of deep network. Since accurate annotation of the hand joints

of thousands of images can be impractical, especially in the

case of 3D joints, synthetic data is often used. Although the

ground truth for synthetic hands is easy to obtain, they lack

realism and can lead to poor performance on real images.

Indeed, Mueller et al. [26] created and released a dataset con-

sisting of 440k images that include both synthetic and “real”

(GANerated) images, which were generated by GeoConGAN,
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Fig. 2. Network architecture at inference time. The input is a square RGB-only image and the output is a tensor consisting of 2D joint heatmaps. All layers
are drawn with blocks of the same size to simplify their graphical representation.

a geometrically consistent image-to-image translation network

based on CycleGAN [39]. As usual for generative adversarial

networks (GANs) [40], [41], two antagonistic networks are

trained in the form of a minimax game: a generator learns

to generate new synthetic data, and a discriminator learns to

determine if a sample is real or not. CycleGAN is a particular

type of GAN that can learn the relationship between image

domains to translate an image from a source domain to a

target domain in a bidirectional way, without paired input-

output examples. In the case of GeoConGAN, two conditional

generators and two discriminators were trained on unpaired

real and synthetic images to simultaneously learn the mapping

between synthetic and real images and vice versa.
We focused on RegNet considering the impressive results

achieved, although it was not designed specifically for mobile

devices. In particular, we were interested in (i) the global hand

positions in the 2D image-space, and (ii) inference on mobile,

which has fewer resources than a computer. Therefore, we

decided to consider only the first part of RegNet at inference

time, i.e., without the refinement module and with the only

branch related to 2D predictions, and find a compromise

between performance and computational costs. The model

used is shown in Fig. 2. Inputs are RGB images captured

by the smartphone camera and pre-processed before being

passed into the neural network. Firstly, they are center cropped;

secondly, images are resized to 128× 128 and normalized in

the range [−1, 1]. We experimentally verified that the resizing

of images according to this criterion still allows obtaining

the features necessary to tackle the hand tracking problem,

partially reducing the inference time and achieving acceptable

performance in terms of accuracy of the 2D predictions. More-

over, computational time was further reduced, considering the

lower network depth compared to the original architecture.

More information is provided in Section V-A.
The network output is a tensor with size 32 × 32 × 22

consisting of 2D heatmaps in which the first 21 channels

contain information about the wrist and 20 finger joints. The

last tensor channel is for background, as common practice

in approaches employing heatmaps [42], [43]. Then, at the

inference phase, the position (x̂k, ŷk) of the k-th joint in the

image-space is recovered from the maximum values of the

corresponding predicted heatmap Ĥk resized to the input size:

(x̂k, ŷk) = argmax
(x,y)

Ĥk(x, y), k ∈ {1, ...,K = 21} (1)

Fig. 3 shows an input RGB image, the 22 heatmaps obtained,

and an overlap between the hand and the recovered positions

of the 2D joints.

Fig. 3. The image in the top left corner is the RGB input, followed by
the output resized heatmaps. The maximum values of each of the first 21
heatmaps contain information about a joint, as shown by the colored dots. The
the second-last plot shows the background heatmap. The lower right corner
depicts an overlap between the input and the recovered 2D joint predictions.

IV. SYSTEM DESIGN AND IMPLEMENTATION

We designed a mobile app for hand tracking from RGB

images captured by a smartphone camera and processed by a

deep convolutional neural network. It was developed in Java,

C++ native code, and OpenCV [44], building an Android

Studio project requiring the Android Native Development Kit

(NDK) and the Java Native Interface (JNI) framework. Our

application is composed of two parts. The first one is related

to the creation and management of the graphical interface, and

responsible for communicating with the application logic. The

graphical user interface is simple and intuitive. Users can see
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a red square bounding box located at the center of the image,

indicating the crop area. Frames are continuously acquired and

the output obtained is visualized interactively through a 2D

skeleton that overlaps the hand (Fig. 1). The second part is

responsible for pre-processing the acquired images, loading

the proposed network architecture and the pre-trained weights

corresponding to the layers considered, and run the model on

mobile devices locally.

V. RESULTS

We conducted several tests to verify the effectiveness of the

neural network and the performance of our mobile app. Firstly,

we performed network inference on a computer to qualitative

evaluate the output obtained and the computation time on the

CPU and GPU. Moreover, we compared the proposed neural

network with the baseline model. Subsequently, we tested our

hand tracking method on smartphone devices.

A. Test on desktop hardware and comparison with the baseline
model

In the case of desktop inference, images were loaded and

processed using OpenCV, the network was queried using Caffe

and Python, and 2D hand skeletons were depicted with Python.

Some results are shown in Fig. 4. Hands in different positions

and with several background scenes can be seen. Sufficiently

accurate results were also obtained in the case of partially

occluded hands, although some errors in the prediction of

some joints can be found, as shown in the last panels of

Fig. 4. In addition, we compared the performance of our

network architecture with the RegNet baseline model [26]

using the same desktop configuration: a notebook with i5-

8th generation CPU and 8GB RAM. Our approach achieved

about 12 fps analyzing a video stream, spending an average

of 0.08 seconds to obtain the prediction for each frame.

The baseline model took about 0.04 seconds longer for each

frame, achieving 8 fps. This corroborates that our approach

achieves good performance and provides remarkable savings in

computation time. In contrast, there was a noticeable reduction

in response times on the GPU. We tested our model using

Google Colab with a Tesla P100 GPU, making predictions

in about 3 milliseconds per frame and reaching more than

300 fps.

B. Test on mobile devices

In the case of our mobile application, the network inference

was performed in the native code using OpenCV in Android,

as described in Section IV. Fig. 5 shows some results obtained

from RGB video frames captured by the smartphone camera

and processed by the neural network model directly on mobile

devices. The obtained heatmaps were used to calculate the 2D

positions of the joints and draw the hand skeletons. Different

backgrounds, variable brightness, and partial hand occlusions

were considered. It is remarkable that the prediction obtained

is plausible and sufficiently accurate even in the case of an

object occluding a considerable part of the hand, despite the

Fig. 4. Results obtained by querying the neural network, which is the first
part of RegNet, using a desktop device. The first six panels show the 2D
skeletons in the case of open hands with different backgrounds, while the last
six show the predictions in the case of partially occluded hands.

challenging scenario (last panel of Fig. 5). A video demo1

of our work shows other results obtained by running our

application.

Since most mobile or embedded devices have limited com-

putational performance and GPUs are not always available,

performing AI-based image analysis approaches is not always

feasible. Therefore, we focused on CPU performance and

tested our app on three types of medium and high range

smartphones, comparing response time. The calculated time is

the overall pre-processing and network inference times. Table I

illustrates the average frame rate and the mean inference time

per image obtained on the CPU of tested mobile computing

system-on-a-chips (SoCs). All platforms have an ARM-based

octa-core CPU. The highest frame rate was achieved on the

LG G8s smartphone with a Snapdragon 855 SoC, which

processed each image and ran the model in about 0.05 seconds

allowing for interactive hand tracking. Worse performances

were achieved on the Samsung A7 smartphone with a Exynos

7885 SoC and the Huawei Honor 9 Lite with a HiSilicon Kirin

659 SoC. We are confident that lower response time, hence

1Some video results obtained with our hand tracking app are available at
the following link: http://graphics.unibas.it/www/HandTrackingMobile/index.
md.html
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Fig. 5. 2D hand tracking on a mobile device. The RGB images were
captured by the smartphone camera and processed by the proposed network
architecture. Several scenarios were evaluated: open and partially closed hands
are shown in the first five panels, while several occlusions are considered in
the last three panels. Note that a bigger object occluding much of the hand is
shown in the last panel. Although it is a challenging scenario, the prediction
is plausible and sufficiently accurate.

higher fps, can be obtained with the latest and next-generation

processors, such as Snapdragon 855+ and Snapdragon 865.

VI. CONCLUSION

We developed an Android app for hand tracking from RGB

images acquired by the smartphone camera. Input images were

passed to a neural network based on RegNet [26], a model

for regressing hand joints positions that achieved remarkable

results, even though it was not specifically conceived to run on

devices with limited resources, such as mobile and embedded

platforms. Since we were interested in 2D positions and the

execution on mobile devices, we focused on the first part of

RegNet, removing the branch related to intermediate 3D joint

TABLE I
PERFORMANCE ACHIEVED ON THE CPU OF MEDIUM AND HIGH-END

SMARTPHONES. THE SECOND COLUMN SHOWS THE AVERAGE FRAME

RATE, WHEREAS THE THIRD SHOWS THE MEAN TIME REQUIRED TO

PRE-PROCESS EACH IMAGE AND OBTAIN THE NETWORK PREDICTION.

SoC Frame rate (fps) Inference time (s)
Samsung Exynos 7885 3 0.3

Huawei HiSilicon Kirin 659 12 0.08
Qualcomm Snapdragon 855 18 0.05

predictions, the projection layer, and the refinement module

during the inference phase (Fig. 2), reducing computational

times. In particular, we compared the proposed architecture

with the RegNet baseline model using the same desktop

hardware configuration. Our network obtained 0.04 seconds

less for each frame prediction on average, confirming that

our network architecture allows obtaining remarkable savings

in computation time. Moreover, we tested our model on a

Tesla P100 GPU, reaching more than 300 fps. Subsequently,

inference on mobile devices was analyzed, and performance

on their CPUs was considered. The lower response time was

achieved on a high-end device with a Qualcomm Snapdragon

855 SoC that allowed getting hand joints predictions in

about 0.05 seconds for each frame (18 fps). Furthermore, we

performed qualitative evaluations using photos in which the

hands were captured on different backgrounds and in various

positions. Acceptable results were obtained even in the case

of partial occlusions considering objects of different sizes, as

can be seen in the last panels of Fig. 4 and 5.

Although accurate results were achieved in most scenarios,

there are some limitations. In particular, they can be found in

the case of multiple hands in the scene, completely closed and

almost totally occluded hands. In addition, the bounding box

was centered on the app camera preview. Therefore, it would

be interesting to add a hand detection step before the hand

tracking step. Another possible future development could con-

cern the robustness of the system towards users of other ethnic

groups. In that case, a more diverse training dataset containing

different skin colors should be collected and used. Finally, in

the future, we could try to speed up the network inference

process, for example using the Android Neural Networks API

(NNAPI), which is available for devices with Android 8.1 or

higher. It provides acceleration for some higher-level machine

learning frameworks, such as TensorFlow Lite, on Android

devices with GPU or NPU.

REFERENCES

[1] F. Yin, X. Chai, and X. Chen, “Iterative reference driven metric learning
for signer independent isolated sign language recognition,” in European
Conference on Computer Vision. Springer, 2016, pp. 434–450.

[2] H.-S. Yeo, B.-G. Lee, and H. Lim, “Hand tracking and gesture recogni-
tion system for human-computer interaction using low-cost hardware,”
Multimedia Tools and Applications, vol. 74, no. 8, pp. 2687–2715, 2015.

[3] A. Markussen, M. R. Jakobsen, and K. Hornbæk, “Vulture: a mid-air
word-gesture keyboard,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2014, pp. 1073–1082.

[4] G. Caggianese, L. Gallo, and P. Neroni, “An investigation of leap motion
based 3d manipulation techniques for use in egocentric viewpoint,” in
International Conference on Augmented Reality, Virtual Reality and
Computer Graphics. Springer, 2016, pp. 318–330.

384



[5] G. Caggianese, N. Capece, U. Erra, L. Gallo, and M. Rinaldi, “Freehand
steering locomotion techniques for immersive virtual environments:
A comparative evaluation,” International Journal of Human-Computer
Interaction, 2020.

[6] T. Lee and T. Hollerer, “Multithreaded hybrid feature tracking for
markerless augmented reality,” IEEE transactions on visualization and
computer graphics, vol. 15, no. 3, pp. 355–368, 2009.

[7] Y. Jang, S.-T. Noh, H. J. Chang, T.-K. Kim, and W. Woo, “3d finger
cape: Clicking action and position estimation under self-occlusions in
egocentric viewpoint,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 21, no. 4, pp. 501–510, 2015.

[8] M. H. K. Ali, M. A. Azman, Z. H. Ismail et al., “Real-time hand gestures
system for mobile robots control,” Procedia Engineering, vol. 41, pp.
798–804, 2012.

[9] G. Baulig, T. Gulde, and C. Curio, “Adapting egocentric visual hand
pose estimation towards a robot-controlled exoskeleton,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp. 0–0.

[10] B. Doosti, “Hand pose estimation: A survey,” arXiv preprint
arXiv:1903.01013, 2019.
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