This paper explores multi-instrument space-borne observations in order to validate physical concepts of Lithosphere-AtmosphereIonosphere Coupling (LAIC) in relation to a selection of major seismic events. In this study we apply some validated techniques to observations in order to identify atmospheric and ionospheric precursors associated with some of recent most destructive earthquakes: M8.6 of March 28, 2005 and M8.5 of Sept. 12, 2007 in Sumatra, and M7.9 of May 12, 2008 in Wenchuan, China. New investigations are also presented concerning these three earthquakes and for the M7.2 of March 2008 in the Xinjiang-Xizang border region, China (the Yutian earthquake). It concerns the ionospheric density, the Global Ionospheric Maps (GIM) of the Total Electron Content (TEC), the Thermal InfraRed (TIR) anomalies, and the Outgoing Longwave Radiation (OLR) data. It is shown that all these anomalies are identified as short-term precursors, which can be explained by the LAIC concept proposed in [S. Pulinets, D. Ouzounov, J. Asian Earth Sci. 41, 371 (2011)].

Atmospheric and ionospheric coupling phenomena associated with large earthquakes

Tramutoli, V.;Genzano, N.;Lisi, M.;
2021-01-01

Abstract

This paper explores multi-instrument space-borne observations in order to validate physical concepts of Lithosphere-AtmosphereIonosphere Coupling (LAIC) in relation to a selection of major seismic events. In this study we apply some validated techniques to observations in order to identify atmospheric and ionospheric precursors associated with some of recent most destructive earthquakes: M8.6 of March 28, 2005 and M8.5 of Sept. 12, 2007 in Sumatra, and M7.9 of May 12, 2008 in Wenchuan, China. New investigations are also presented concerning these three earthquakes and for the M7.2 of March 2008 in the Xinjiang-Xizang border region, China (the Yutian earthquake). It concerns the ionospheric density, the Global Ionospheric Maps (GIM) of the Total Electron Content (TEC), the Thermal InfraRed (TIR) anomalies, and the Outgoing Longwave Radiation (OLR) data. It is shown that all these anomalies are identified as short-term precursors, which can be explained by the LAIC concept proposed in [S. Pulinets, D. Ouzounov, J. Asian Earth Sci. 41, 371 (2011)].
File in questo prodotto:
File Dimensione Formato  
Parrot_et_al-2021-The_European_Physical_Journal_Special_Topics.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 6.33 MB
Formato Adobe PDF
6.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/146048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact