In the present paper we consider the Dirichlet problem for the second order differential operator E = ∇(A ∇), where A is a matrix with complex valued L^∞ entries. We introduce the concept of dissipativity of E with respect to a given function φ : R+ → R+. Under the assumption that the ImA is symmetric, we prove that the condition |sφ′(s)| |⟨ImA (x)ξ, ξ⟩| ⩽ 2√φ(s)[sφ(s)]′ ⟨ReA (x)ξ, ξ⟩ (for almost every x∈Ω⊂R^N) and for any s>0,ξ∈^R^N) is necessary and sufficient for the functional dissipativity of E.

Criterion for the functional dissipativity of second order differential operators with complex coefficients

Cialdea, A.
;
2021-01-01

Abstract

In the present paper we consider the Dirichlet problem for the second order differential operator E = ∇(A ∇), where A is a matrix with complex valued L^∞ entries. We introduce the concept of dissipativity of E with respect to a given function φ : R+ → R+. Under the assumption that the ImA is symmetric, we prove that the condition |sφ′(s)| |⟨ImA (x)ξ, ξ⟩| ⩽ 2√φ(s)[sφ(s)]′ ⟨ReA (x)ξ, ξ⟩ (for almost every x∈Ω⊂R^N) and for any s>0,ξ∈^R^N) is necessary and sufficient for the functional dissipativity of E.
2021
File in questo prodotto:
File Dimensione Formato  
nonlinear analysis.pdf

non disponibili

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 938 kB
Formato Adobe PDF
938 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/146044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact