Biometric recognition systems based on ultrasonic images have several advantages over other technologies, including the capability of capturing 3D images and detecting liveness. In this work, a recognition system based on hand geometry achieved through ultrasound images is proposed and experimentally evaluated. 3D images of human hand are acquired by performing parallel mechanical scans with a commercial ultrasound probe. Several 2D images are then extracted at increasing under-skin depths and, from each of them, up to 26 distances among key points of the hand are defined and computed to achieve a 2D template. A 3D template is then obtained by combining in several ways 2D templates of two or more images. A preliminary evaluation of the system is achieved by carrying out verification experiments on a home–made database. Results have shown a good recognition accuracy: the Equal Error Rate was 1.15% when a single 2D image is used and improved to 0.98% by using the 3D template. The possibility to upgrade the proposed system to a multimodal system, by extracting from the same volume other features like palmprint and hand veins, as well as possible improvements are finally discussed.
Biometric recognition through 3D ultrasound hand geometry
Iula A.
2021-01-01
Abstract
Biometric recognition systems based on ultrasonic images have several advantages over other technologies, including the capability of capturing 3D images and detecting liveness. In this work, a recognition system based on hand geometry achieved through ultrasound images is proposed and experimentally evaluated. 3D images of human hand are acquired by performing parallel mechanical scans with a commercial ultrasound probe. Several 2D images are then extracted at increasing under-skin depths and, from each of them, up to 26 distances among key points of the hand are defined and computed to achieve a 2D template. A 3D template is then obtained by combining in several ways 2D templates of two or more images. A preliminary evaluation of the system is achieved by carrying out verification experiments on a home–made database. Results have shown a good recognition accuracy: the Equal Error Rate was 1.15% when a single 2D image is used and improved to 0.98% by using the 3D template. The possibility to upgrade the proposed system to a multimodal system, by extracting from the same volume other features like palmprint and hand veins, as well as possible improvements are finally discussed.File | Dimensione | Formato | |
---|---|---|---|
Iula2021Ultras.pdf
solo utenti autorizzati
Tipologia:
Pdf editoriale
Licenza:
Versione editoriale
Dimensione
5.28 MB
Formato
Adobe PDF
|
5.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.