Biometric recognition systems based on ultrasonic images have several advantages over other technologies, including the capability of capturing 3D images and detecting liveness. In this work, a recognition system based on hand geometry achieved through ultrasound images is proposed and experimentally evaluated. 3D images of human hand are acquired by performing parallel mechanical scans with a commercial ultrasound probe. Several 2D images are then extracted at increasing under-skin depths and, from each of them, up to 26 distances among key points of the hand are defined and computed to achieve a 2D template. A 3D template is then obtained by combining in several ways 2D templates of two or more images. A preliminary evaluation of the system is achieved by carrying out verification experiments on a home–made database. Results have shown a good recognition accuracy: the Equal Error Rate was 1.15% when a single 2D image is used and improved to 0.98% by using the 3D template. The possibility to upgrade the proposed system to a multimodal system, by extracting from the same volume other features like palmprint and hand veins, as well as possible improvements are finally discussed.

Biometric recognition through 3D ultrasound hand geometry

Iula A.
2021-01-01

Abstract

Biometric recognition systems based on ultrasonic images have several advantages over other technologies, including the capability of capturing 3D images and detecting liveness. In this work, a recognition system based on hand geometry achieved through ultrasound images is proposed and experimentally evaluated. 3D images of human hand are acquired by performing parallel mechanical scans with a commercial ultrasound probe. Several 2D images are then extracted at increasing under-skin depths and, from each of them, up to 26 distances among key points of the hand are defined and computed to achieve a 2D template. A 3D template is then obtained by combining in several ways 2D templates of two or more images. A preliminary evaluation of the system is achieved by carrying out verification experiments on a home–made database. Results have shown a good recognition accuracy: the Equal Error Rate was 1.15% when a single 2D image is used and improved to 0.98% by using the 3D template. The possibility to upgrade the proposed system to a multimodal system, by extracting from the same volume other features like palmprint and hand veins, as well as possible improvements are finally discussed.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/145863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact