This study investigated the transformation of secondary amine pharmaceuticals in UV-C/NO3− and in nitrate-rich wastewater at 254 nm by taking diclofenac, diphenylamine, mefenamic acid and furosemide as probe compounds. The degradation of targeted compounds were positively related to nitrate concentration and mainly caused by the formation of peroxynitrite and related reactive nitrogen species (e.g., nitrogen oxide and nitrogen dioxide radicals). Major transformation products were identified to provide fundamental understanding of the selective oxidation of secondary amine with reactive nitrogen species. UV photolysis, hydroxyl radical oxidation, nitration and nitrosation processes were found to be the most significant transformation pathways. In case of diphenylamine, for which most of the identified intermediates were available as standard, the relative significance of each transformation route could be established, highlighting for the first time the important role of N-nitrosation processes in UV/NO3− treatment followed by the decomposition of the resulting N-nitroso compounds by an alpha hydroxylation mechanism. This specific transformation pathway was of concern because it constitutes the molecular basis of N-nitrosamine carcinogenicity and may contribute to the increase in effluent genotoxicity under UV-C treatment in addition to the formation of nitrophenols. Hydrogenocarbonate ions at concentration values higher than 300 mg/L appeared to be a protective specie against nitrosation processes due to the formation of carbamate adducts but H2O2 in UV-C/H2O2 could be responsible for an exacerbation of the N-nitrosation pathway due to an addition source of hydroxyl radical in the system. The occurrence of major transformation products of diclofenac was confirmed in nitrate-rich wastewater under UV-C treatment at pilot-scale operation.

Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment

Brienza M.;
2019

Abstract

This study investigated the transformation of secondary amine pharmaceuticals in UV-C/NO3− and in nitrate-rich wastewater at 254 nm by taking diclofenac, diphenylamine, mefenamic acid and furosemide as probe compounds. The degradation of targeted compounds were positively related to nitrate concentration and mainly caused by the formation of peroxynitrite and related reactive nitrogen species (e.g., nitrogen oxide and nitrogen dioxide radicals). Major transformation products were identified to provide fundamental understanding of the selective oxidation of secondary amine with reactive nitrogen species. UV photolysis, hydroxyl radical oxidation, nitration and nitrosation processes were found to be the most significant transformation pathways. In case of diphenylamine, for which most of the identified intermediates were available as standard, the relative significance of each transformation route could be established, highlighting for the first time the important role of N-nitrosation processes in UV/NO3− treatment followed by the decomposition of the resulting N-nitroso compounds by an alpha hydroxylation mechanism. This specific transformation pathway was of concern because it constitutes the molecular basis of N-nitrosamine carcinogenicity and may contribute to the increase in effluent genotoxicity under UV-C treatment in addition to the formation of nitrophenols. Hydrogenocarbonate ions at concentration values higher than 300 mg/L appeared to be a protective specie against nitrosation processes due to the formation of carbamate adducts but H2O2 in UV-C/H2O2 could be responsible for an exacerbation of the N-nitrosation pathway due to an addition source of hydroxyl radical in the system. The occurrence of major transformation products of diclofenac was confirmed in nitrate-rich wastewater under UV-C treatment at pilot-scale operation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/143646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact