Agroforestry, the intentional integration of trees with crops and/or livestock, can lead to multiple economic and ecological benefits compared to trees and crops/livestock grown separately. Field experimentation has been the primary approach to understanding the tree-crop interactions inherent in agroforestry. However, the number of field experiments has been limited by slow tree maturation and difficulty in obtaining consistent funding. Models have the potential to overcome these hurdles and rapidly advance understanding of agroforestry systems. Hi-sAFe is a mechanistic, biophysical model designed to explore the interactions within agroforestry systems that mix trees with crops. The model couples the pre-existing STICS crop model to a new tree model that includes several plasticity mechanisms responsive to tree-tree and tree-crop competition for light, water, and nitrogen. Monoculture crop and tree systems can also be simulated, enabling calculation of the land equivalent ratio. The model's 3D and spatially explicit form is key for accurately representing many competition and facilitation processes. Hi-sAFe is a novel tool for exploring agroforestry designs (e.g., tree spacing, crop type, tree row orientation), management strategies (e.g., thinning, branch pruning, root pruning, fertilization, irrigation), and responses to environmental variation (e.g., latitude, climate change, soil depth, soil structure and fertility, fluctuating water table). By improving our understanding of the complex interactions within agroforestry systems, Hi-sAFe can ultimately facilitate adoption of agroforestry as a sustainable land-use practice.

Hi-sAFe: A 3D agroforestry model for integrating dynamic tree-crop interactions

Reyes F.;
2019

Abstract

Agroforestry, the intentional integration of trees with crops and/or livestock, can lead to multiple economic and ecological benefits compared to trees and crops/livestock grown separately. Field experimentation has been the primary approach to understanding the tree-crop interactions inherent in agroforestry. However, the number of field experiments has been limited by slow tree maturation and difficulty in obtaining consistent funding. Models have the potential to overcome these hurdles and rapidly advance understanding of agroforestry systems. Hi-sAFe is a mechanistic, biophysical model designed to explore the interactions within agroforestry systems that mix trees with crops. The model couples the pre-existing STICS crop model to a new tree model that includes several plasticity mechanisms responsive to tree-tree and tree-crop competition for light, water, and nitrogen. Monoculture crop and tree systems can also be simulated, enabling calculation of the land equivalent ratio. The model's 3D and spatially explicit form is key for accurately representing many competition and facilitation processes. Hi-sAFe is a novel tool for exploring agroforestry designs (e.g., tree spacing, crop type, tree row orientation), management strategies (e.g., thinning, branch pruning, root pruning, fertilization, irrigation), and responses to environmental variation (e.g., latitude, climate change, soil depth, soil structure and fertility, fluctuating water table). By improving our understanding of the complex interactions within agroforestry systems, Hi-sAFe can ultimately facilitate adoption of agroforestry as a sustainable land-use practice.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/143386
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact