In the context of configurational characterisations of symmetric projective planes, a new proof of a theorem of Kallaher and Ostrom characterising planes of even order of Lenz-Barlotti type IV.a.2 via Bol conditions is given. In contrast to their proof, we need neither the Feit-Thompson theorem on solvability of groups of odd order, nor Bender’s strongly embedded subgroup theorem, depending rather on Glauberman’s Z^∗- theorem.

Bol quasifields

Alessandro Siciliano
2020-01-01

Abstract

In the context of configurational characterisations of symmetric projective planes, a new proof of a theorem of Kallaher and Ostrom characterising planes of even order of Lenz-Barlotti type IV.a.2 via Bol conditions is given. In contrast to their proof, we need neither the Feit-Thompson theorem on solvability of groups of odd order, nor Bender’s strongly embedded subgroup theorem, depending rather on Glauberman’s Z^∗- theorem.
2020
File in questo prodotto:
File Dimensione Formato  
33tpas.pdf

accesso aperto

Licenza: Versione editoriale
Dimensione 123.25 kB
Formato Adobe PDF
123.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/143265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact