In the present work, tenoxicam (H2Ten) reacted with Mn(II), Co(II), Ni(II), Cu(II) and Zn (II) ions in the presence of 1.10-phenthroline (Phen), forming new mixed ligand metal complexes. The properties of the formed complexes were depicted by elemental analyses, infrared, electronic spectra, proton nuclear magnetic resonance (1H NMR), mass spectrometry, thermogravimetric (TGA) and differential thermogravimetric (DTG) analysis, molar conductance and magnetic moment. IR spectra demonstrated that H2Ten acted as a neutral bidentate ligand, coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety, and Phen through the nitrogen atoms. Kinetic thermodynamics parameters activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*), Gibbs, free energy (ΔG*) associated to the complexes have been evaluated. Antibacterial screening of the compounds was carried out in vitro against Clavibacter michiganensis, Xanthomonas campestris and Bacillus megaterium. Antifungal activity was performed in vitro against Monilinia fructicola, Penicillium digitatum and Colletotrichum acutatum. The possible phytotoxic effect of the studied compounds was also investigated on Solanum lycopersicum (tomatoes) and Lepidium sativum (garden cress) seeds. The anticancer activity was screened against cell cultures of HCT-116 (human colorectal carcinoma), HepG2 (human hepatocellular carcinoma) and MCF-7 (human breast adenocarcinoma).

Biological and spectroscopic investigations of new tenoxicam and 1.10-phenthroline metal complexes

Hazem S. Elshafie;Ippolito Camele
;
2020-01-01

Abstract

In the present work, tenoxicam (H2Ten) reacted with Mn(II), Co(II), Ni(II), Cu(II) and Zn (II) ions in the presence of 1.10-phenthroline (Phen), forming new mixed ligand metal complexes. The properties of the formed complexes were depicted by elemental analyses, infrared, electronic spectra, proton nuclear magnetic resonance (1H NMR), mass spectrometry, thermogravimetric (TGA) and differential thermogravimetric (DTG) analysis, molar conductance and magnetic moment. IR spectra demonstrated that H2Ten acted as a neutral bidentate ligand, coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety, and Phen through the nitrogen atoms. Kinetic thermodynamics parameters activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*), Gibbs, free energy (ΔG*) associated to the complexes have been evaluated. Antibacterial screening of the compounds was carried out in vitro against Clavibacter michiganensis, Xanthomonas campestris and Bacillus megaterium. Antifungal activity was performed in vitro against Monilinia fructicola, Penicillium digitatum and Colletotrichum acutatum. The possible phytotoxic effect of the studied compounds was also investigated on Solanum lycopersicum (tomatoes) and Lepidium sativum (garden cress) seeds. The anticancer activity was screened against cell cultures of HCT-116 (human colorectal carcinoma), HepG2 (human hepatocellular carcinoma) and MCF-7 (human breast adenocarcinoma).
2020
File in questo prodotto:
File Dimensione Formato  
ERRATUM_Tenoxicam_molecules-26-03662.pdf

accesso aperto

Descrizione: TENOXICAM
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 153.05 kB
Formato Adobe PDF
153.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/142038
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact