This paper describes an innovative virtual laboratory for students of Hydraulic Engineering at an Italian university that shows water discharge measurement techniques applied in open-channel flows. Such new technology, which supports traditional practical classes, has the potential to increase students' motivation and improve their skills, as well as simultaneously reducing the costs, time, and possible dangers that continuous field experiments would involve. Thanks to this immersive and interactive experience that is carried out indoors, students learn to move around a fluvial environment, as well as work more safely and with reduced risks of accidents. Besides, the virtual lab can boost learners' interest by combining education with pleasure and making knowledge more fun. Collaboration with a group of students enrolled in the Master's degree course of the Civil and Environmental Engineering program at Basilicata University at the early stages of developing the educational tool led to improvements in its performance and features. Also, a preliminary testing procedure carried out on a student sample, verified the achievement of the students' learning objectives in terms of knowledge and skills. Such analysis indicated that students took more active role in the teaching/learning process and they showed greater interest in the topic dealt with through the new technology compared to the involvement of students observed during traditional lessons in previous years. The architecture and operational modes of the virtual laboratory as well as the results of the preliminary analysis are discussed.

StreamflowVL: A virtual fieldwork laboratory that supports traditional hydraulics engineering learning

Mirauda D.
;
Capece N.;Erra U.
2019-01-01

Abstract

This paper describes an innovative virtual laboratory for students of Hydraulic Engineering at an Italian university that shows water discharge measurement techniques applied in open-channel flows. Such new technology, which supports traditional practical classes, has the potential to increase students' motivation and improve their skills, as well as simultaneously reducing the costs, time, and possible dangers that continuous field experiments would involve. Thanks to this immersive and interactive experience that is carried out indoors, students learn to move around a fluvial environment, as well as work more safely and with reduced risks of accidents. Besides, the virtual lab can boost learners' interest by combining education with pleasure and making knowledge more fun. Collaboration with a group of students enrolled in the Master's degree course of the Civil and Environmental Engineering program at Basilicata University at the early stages of developing the educational tool led to improvements in its performance and features. Also, a preliminary testing procedure carried out on a student sample, verified the achievement of the students' learning objectives in terms of knowledge and skills. Such analysis indicated that students took more active role in the teaching/learning process and they showed greater interest in the topic dealt with through the new technology compared to the involvement of students observed during traditional lessons in previous years. The architecture and operational modes of the virtual laboratory as well as the results of the preliminary analysis are discussed.
2019
File in questo prodotto:
File Dimensione Formato  
StreamflowVL A Virtual Fieldwork Laboratory.pdf

accesso aperto

Descrizione: Articolo di ricerca
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 5.1 MB
Formato Adobe PDF
5.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/141521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact