Graphene Oxide (GO) was prepared by chemical oxidation of high surface area graphite (G). GO was used to support ruthenium catalysts with the aim to activate self-healing reactions in multifunctional materials able to integrate simultaneously the healing reactions with the very interesting properties of graphene-based materials.Grubbs catalysts 1st (G1) and 2nd generation modified (G2(o-tol)), Hoveyda-Grubbs catalysts 1st (HG1) and 2nd generation (HG2) were covalently bonded to GO preserving the same catalytic activity of the catalysts not bonded to the graphene sheets. GO-G2(o-tol) and GO-G1 deactivate during the process of preparation of the self-healing epoxy mixtures at 90 degrees C. Evidence of the self-healing activity of the various catalytic complexes was investigated for both uncured and cured samples. Results show that GO-HG1 and GO-HG2 are not deactivated and hence they are able to trigger self-healing reaction based on the ROMP of 5-ethylidene-2-norbornene (ENB). This behavior is most likely due to the formation of 16 electron Ru-complexes that are more stable than the 14 electron complexes of GO-G1 and GO-G2 catalysts. (C) 2015 Elsevier Ltd. All rights reserved.

Synthesis of ruthenium catalysts functionalized graphene oxide for self-healing applications

Mariconda A.;Raimondo M.
2015-01-01

Abstract

Graphene Oxide (GO) was prepared by chemical oxidation of high surface area graphite (G). GO was used to support ruthenium catalysts with the aim to activate self-healing reactions in multifunctional materials able to integrate simultaneously the healing reactions with the very interesting properties of graphene-based materials.Grubbs catalysts 1st (G1) and 2nd generation modified (G2(o-tol)), Hoveyda-Grubbs catalysts 1st (HG1) and 2nd generation (HG2) were covalently bonded to GO preserving the same catalytic activity of the catalysts not bonded to the graphene sheets. GO-G2(o-tol) and GO-G1 deactivate during the process of preparation of the self-healing epoxy mixtures at 90 degrees C. Evidence of the self-healing activity of the various catalytic complexes was investigated for both uncured and cured samples. Results show that GO-HG1 and GO-HG2 are not deactivated and hence they are able to trigger self-healing reaction based on the ROMP of 5-ethylidene-2-norbornene (ENB). This behavior is most likely due to the formation of 16 electron Ru-complexes that are more stable than the 14 electron complexes of GO-G1 and GO-G2 catalysts. (C) 2015 Elsevier Ltd. All rights reserved.
2015
File in questo prodotto:
File Dimensione Formato  
P18 Synthesis Ru GO 2015.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/139877
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact