Abstract: Sand mining in an active alluvial channel can compromise the streambed stability of the hydraulic structures nearby. This experimental study is aimed at investigating the effects of rectangular mining pit on the morphodynamics around circular tandem piers in a movable bed. A rectangular pit is excavated upstream of two circular piers embedded in the sand-bed in a tandem arrangement. The results are then compared to a case having only the piers without any mining pit. Turbulent stresses and mean velocities in the near-bed region rise significantly at the upstream region of the piers in the presence of a pit. Also, stronger flow reversal and horseshoe vortices have been detected at the base of the pier front. Due to these alterations in the nature of turbulence, erosion of channel beds upstream of the piers, increased scour depths, scour volume, and lateral erosion of the scour hole have been observed. Dynamic evolution of the local scour at various time scales has been studied using a wavelet cross-correlation method. Spatial evolution of local scour is found to be faster when a pit is excavated in the channel. Thus, mining activities near the piers can lead to significant changes in the flow-field, causing excessive scour around piers.

On the morphodynamic alterations around bridge piers under the influence of instream mining

G. OLIVETO
2019-01-01

Abstract

Abstract: Sand mining in an active alluvial channel can compromise the streambed stability of the hydraulic structures nearby. This experimental study is aimed at investigating the effects of rectangular mining pit on the morphodynamics around circular tandem piers in a movable bed. A rectangular pit is excavated upstream of two circular piers embedded in the sand-bed in a tandem arrangement. The results are then compared to a case having only the piers without any mining pit. Turbulent stresses and mean velocities in the near-bed region rise significantly at the upstream region of the piers in the presence of a pit. Also, stronger flow reversal and horseshoe vortices have been detected at the base of the pier front. Due to these alterations in the nature of turbulence, erosion of channel beds upstream of the piers, increased scour depths, scour volume, and lateral erosion of the scour hole have been observed. Dynamic evolution of the local scour at various time scales has been studied using a wavelet cross-correlation method. Spatial evolution of local scour is found to be faster when a pit is excavated in the channel. Thus, mining activities near the piers can lead to significant changes in the flow-field, causing excessive scour around piers.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/138685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact