In this paper we introduce a generalization of Bernstein-Chlodovsky operators that preserves the exponential function $e^{2x}$ ($x geq 0$). We study its approximation properties in several function spaces, and we evaluate the rate of convergence by means of suitable moduli of con- tinuity. Throughout some estimates of the rate of convergence, we prove better error estimation than the original operators on certain intervals.

On Bernstein-Chlodovsky operators preserving $e^{2x}$

Vita Leonessa
2019-01-01

Abstract

In this paper we introduce a generalization of Bernstein-Chlodovsky operators that preserves the exponential function $e^{2x}$ ($x geq 0$). We study its approximation properties in several function spaces, and we evaluate the rate of convergence by means of suitable moduli of con- tinuity. Throughout some estimates of the rate of convergence, we prove better error estimation than the original operators on certain intervals.
2019
File in questo prodotto:
File Dimensione Formato  
Ber-Chlodv2.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 114.02 kB
Formato Adobe PDF
114.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/136821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact