Two novel ligand metal complexes were prepared through the reaction of Zn(II) and Sn(II) with moxifloxacin (MOX) in the presence of glycine (Gly) to investigate their biological activities. IR, UV/VIS and 1H-NMR analysis have been carried out for insuring the chelation process. Results suggested that MOX and Gly react with the metal ions through the carbonyl oxygen atom and the oxygen atom of the carboxylic group of MOX and Gly. The antimicrobial activity was carried out against some common bacterial and fungal pathogens and the radical scavenging activity (RSA%) was evaluated using DPPH and ABTS methods. Phytotoxic effect of the prepared complexes was evaluated in vitro against Raphanus raphanistrum and Lepidium sativum. Hemolytic activity was tested against cell membrane of erythrocytes. Results showed that the two prepared complexes exhibited high antimicrobial activity against all tested phytopathogens and no significant phytotoxic effect has been observed. Only MOX Zn(II) complex showed moderate hemolysis at 100% concentration.

Biological Investigations and Spectroscopic Studies of New Moxifloxacin/Glycine-Metal Complexes

Hazem S. Elshafie;Ippolito Camele
2019-01-01

Abstract

Two novel ligand metal complexes were prepared through the reaction of Zn(II) and Sn(II) with moxifloxacin (MOX) in the presence of glycine (Gly) to investigate their biological activities. IR, UV/VIS and 1H-NMR analysis have been carried out for insuring the chelation process. Results suggested that MOX and Gly react with the metal ions through the carbonyl oxygen atom and the oxygen atom of the carboxylic group of MOX and Gly. The antimicrobial activity was carried out against some common bacterial and fungal pathogens and the radical scavenging activity (RSA%) was evaluated using DPPH and ABTS methods. Phytotoxic effect of the prepared complexes was evaluated in vitro against Raphanus raphanistrum and Lepidium sativum. Hemolytic activity was tested against cell membrane of erythrocytes. Results showed that the two prepared complexes exhibited high antimicrobial activity against all tested phytopathogens and no significant phytotoxic effect has been observed. Only MOX Zn(II) complex showed moderate hemolysis at 100% concentration.
2019
File in questo prodotto:
File Dimensione Formato  
Elshafie_et_al-2019-Chemistry_&_Biodiversity.pdf

accesso aperto

Descrizione: Moxifloxacin/Glycine-Metal Complexes
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/136291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 43
social impact