In early December 2015, a rapid sequence of strong paroxysmal events took place at the Mt. Etna crater area (Sicily, Italy). Intense paroxysms from the Voragine crater (VOR) generated an eruptive column extending up to an altitude of about 15 km above sea level. In the following days, other minor ash emissions occurred from summit craters. In this study, we present results achieved by monitoring Mt. Etna plumes by means of RSTASH (Robust Satellite Techniques-Ash) algorithm, running operationally at the Institute of Methodologies for Environmental Analysis (IMAA) on Advanced Very High Resolution Radiometer (AVHRR) data. Results showed that RSTASH detected an ash plume dispersing from Mt. Etna towards Ionian Sea starting from 3 December at 08:40 UTC, whereas it did not identify ash pixels on satellite data of same day at 04:20 UTC and 04:40 UTC (acquired soon after the end of first paroxysm from VOR), due to a mixed cloud containing SO₂ and ice. During 8⁻10 December, the continuity of RSTASH detections allowed us to estimate the mass eruption rate (an average value of about 1.5 × 10³ kg/s was retrieved here), quantitatively characterizing the eruptive activity from North East Crater (NEC). The work, exploiting information provided also by Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, confirms the important contribution offered by RSTASH in identifying and tracking ash plumes emitted from Mt. Etna, despite some operational limitations (e.g., cloud coverage). Moreover, it shows that an experimental RST product, tailored to SEVIRI data, for the first time used and preliminarily assessed here, may complement RSTASH detections providing information about areas mostly affected by volcanic SO₂.

Investigating Volcanic Plumes from Mt. Etna Eruptions of December 2015 by Means of AVHRR and SEVIRI Data

Tramutoli, Valerio
2019-01-01

Abstract

In early December 2015, a rapid sequence of strong paroxysmal events took place at the Mt. Etna crater area (Sicily, Italy). Intense paroxysms from the Voragine crater (VOR) generated an eruptive column extending up to an altitude of about 15 km above sea level. In the following days, other minor ash emissions occurred from summit craters. In this study, we present results achieved by monitoring Mt. Etna plumes by means of RSTASH (Robust Satellite Techniques-Ash) algorithm, running operationally at the Institute of Methodologies for Environmental Analysis (IMAA) on Advanced Very High Resolution Radiometer (AVHRR) data. Results showed that RSTASH detected an ash plume dispersing from Mt. Etna towards Ionian Sea starting from 3 December at 08:40 UTC, whereas it did not identify ash pixels on satellite data of same day at 04:20 UTC and 04:40 UTC (acquired soon after the end of first paroxysm from VOR), due to a mixed cloud containing SO₂ and ice. During 8⁻10 December, the continuity of RSTASH detections allowed us to estimate the mass eruption rate (an average value of about 1.5 × 10³ kg/s was retrieved here), quantitatively characterizing the eruptive activity from North East Crater (NEC). The work, exploiting information provided also by Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, confirms the important contribution offered by RSTASH in identifying and tracking ash plumes emitted from Mt. Etna, despite some operational limitations (e.g., cloud coverage). Moreover, it shows that an experimental RST product, tailored to SEVIRI data, for the first time used and preliminarily assessed here, may complement RSTASH detections providing information about areas mostly affected by volcanic SO₂.
2019
File in questo prodotto:
File Dimensione Formato  
Marchese et al. 2019 sensors-19-01174.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 10.03 MB
Formato Adobe PDF
10.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/136184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact