Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, δ = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electron-scale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement - a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.
Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall
Bowman, C.;Dickinson, D.;Horvath, L.;Lunniss, A. E.;Wilson, H. R.;Cziegler, I.;Frassinetti, L.;Gibson, K.;Kirk, A.;Lipschultz, B.;Maggi, C. F.;Roach, C. M.;Saarelma, S.;Snyder, P. B.;Thornton, A.;Wynn, A.;X. Litaudon;S. Abduallev;M. Abhangi;P. Abreu;M. Afzal;K. M. Aggarwal;T. Ahlgren;J. H. Ahn;L. Aho-Mantila;N. Aiba;M. Airila;R. Albanese;V. Aldred;D. Alegre;E. Alessi;P. Aleynikov;A. Alfier;A. Alkseev;M. Allinson;B. Alper;E. Alves;G. Ambrosino;R. Ambrosino;L. Amicucci;V. Amosov;E. Andersson Sundén;M. Angelone;M. Anghel;C. Angioni;L. Appel;C. Appelbee;P. Arena;M. Ariola;H. Arnichand;S. Arshad;A. Ash;N. Ashikawa;V. Aslanyan;O. Asunta;F. Auriemma;Y. Austin;L. Avotina;M. D. Axton;C. Ayres;M. Bacharis;A. Baciero;D. Baião;S. Bailey;A. Baker;I. Balboa;M. Balden;N. Balshaw;R. Bament;J. W. Banks;Y. F. Baranov;M. A. Barnard;D. Barnes;M. Barnes;R. Barnsley;A. Baron Wiechec;L. Barrera Orte;M. Baruzzo;V. Basiuk;M. Bassan;R. Bastow;A. Batista;P. Batistoni;R. Baughan;B. Bauvir;L. Baylor;B. Bazylev;J. Beal;P. S. Beaumont;M. Beckers;B. Beckett;A. Becoulet;N. Bekris;M. Beldishevski;K. Bell;F. Belli;M. Bellinger;É. Belonohy;N. Ben Ayed;N. A. Benterman;H. Bergsåker;J. Bernardo;M. Bernert;M. Berry;L. Bertalot;C. Besliu;M. Beurskens;B. Bieg;J. Bielecki;T. Biewer;M. Bigi;P. Bílková;F. Binda;A. Bisoffi;J. P. S. Bizarro;C. Björkas;J. Blackburn;K. Blackman;T. R. Blackman;P. Blanchard;P. Blatchford;V. Bobkov;A. Boboc;G. Bodnár;O. Bogar;I. Bolshakova;T. Bolzonella;N. Bonanomi;F. Bonelli;J. Boom;J. Booth;D. Borba;D. Borodin;I. Borodkina;A. Botrugno;C. Bottereau;P. Boulting;C. Bourdelle;M. Bowden;C. Bower;C. Bowman;T. Boyce;C. Boyd;H. J. Boyer;J. M. A. Bradshaw;V. Braic;R. Bravanec;B. Breizman;S. Bremond;P. D. Brennan;S. Breton;A. Brett;S. Brezinsek;M. D. J. Bright;M. Brix;W. Broeckx;M. Brombin;A. Brosławski;D. P. D. Brown;M. Brown;E. Bruno;J. Bucalossi;J. Buch;J. Buchanan;M. A. Buckley;R. Budny;H. Bufferand;M. Bulman;N. Bulmer;P. Bunting;P. Buratti;A. Burckhart;A. Buscarino;A. Busse;N. K. Butler;I. Bykov;J. Byrne;P. Cahyna;G. Calabrò;I. Calvo;Y. Camenen;P. Camp;D. C. Campling;J. Cane;B. Cannas;A. J. Capel;P. J. Card;A. Cardinali;P. Carman;M. Carr;D. Carralero;L. Carraro;B. B. Carvalho;I. Carvalho;P. Carvalho;F. J. Casson;C. Castaldo;N. Catarino;J. Caumont;F. Causa;R. Cavazzana;K. Cave-Ayland;M. Cavinato;M. Cecconello;S. Ceccuzzi;E. Cecil;A. Cenedese;R. Cesario;C. D. Challis;M. Chandler;D. Chandra;C. S. Chang;A. Chankin;I. T. Chapman;S. C. Chapman;M. Chernyshova;G. Chitarin;G. Ciraolo;D. Ciric;J. Citrin;F. Clairet;E. Clark;M. Clark;R. Clarkson;D. Clatworthy;C. Clements;M. Cleverly;J. P. Coad;P. A. Coates;A. Cobalt;V. Coccorese;V. Cocilovo;S. Coda;R. Coelho;J. W. Coenen;I. Coffey;L. Colas;S. Collins;D. Conka;S. Conroy;N. Conway;D. Coombs;D. Cooper;S. R. Cooper;C. Corradino;Y. Corre;G. Corrigan;S. Cortes;D. Coster;A. S. Couchman;M. P. Cox;T. Craciunescu;S. Cramp;R. Craven;F. Crisanti;G. Croci;D. Croft;K. Crombé;R. Crowe;N. Cruz;G. Cseh;A. Cufar;A. Cullen;M. Curuia;A. Czarnecka;H. Dabirikhah;P. Dalgliesh;S. Dalley;J. Dankowski;D. Darrow;O. Davies;W. Davis;C. Day;I. E. Day;M. De Bock;A. de Castro;E. de la Cal;E. de la Luna;G. De Masi;J. L. de Pablos;G. De Temmerman;G. De Tommasi;P. de Vries;K. Deakin;J. Deane;F. Degli Agostini;R. Dejarnac;E. Delabie;N. den Harder;R. O. Dendy;J. Denis;P. Denner;S. Devaux;P. Devynck;F. Di Maio;A. Di Siena;C. Di Troia;P. Dinca;R. D'Inca;B. Ding;T. Dittmar;H. Doerk;R. P. Doerner;T. Donné;S. E. Dorling;S. Dormido-Canto;S. Doswon;D. Douai;P. T. Doyle;A. Drenik;P. Drewelow;P. Drews;P. Duckworth;R. Dumont;P. Dumortier;D. Dunai;M. Dunne;I. Ďuran;F. Durodié;P. Dutta;B. P. Duval;R. Dux;K. Dylst;N. Dzysiuk;P. V. Edappala;J. Edmond;A. M. Edwards;J. Edwards;T. Eich;A. Ekedahl;R. El-Jorf;C. G. Elsmore;M. Enachescu;G. Ericsson;F. Eriksson;J. Eriksson;L. G. Eriksson;B. Esposito;S. Esquembri;H. G. Esser;D. Esteve;B. Evans;G. E. Evans;G. Evison;G. D. Ewart;D. Fagan;M. Faitsch;D. Falie;A. Fanni;A. Fasoli;J. M. Faustin;N. Fawlk;L. Fazendeiro;N. Fedorczak;R. C. Felton;K. Fenton;A. Fernades;H. Fernandes;J. Ferreira;J. A. Fessey;O. Février;O. Ficker;A. Field;S. Fietz;A. Figueiredo;J. Figueiredo;A. Fil;P. Finburg;M. Firdaouss;U. Fischer;L. Fittill;M. Fitzgerald;D. Flammini;J. Flanagan;C. Fleming;K. Flinders;N. Fonnesu;J. M. Fontdecaba;A. Formisano;L. Forsythe;L. Fortuna;E. Fortuna-Zalesna;M. Fortune;S. Foster;T. Franke;T. Franklin;M. Frasca;L. Frassinetti;M. Freisinger;R. Fresa;D. Frigione;V. Fuchs;D. Fuller;S. Futatani;J. Fyvie;K. Gál;D. Galassi;K. Gałązka;J. Galdon-Quiroga;J. Gallagher;D. Gallart;R. Galvão;X. Gao;Y. Gao;J. Garcia;A. Garcia-Carrasco;M. García-Muñoz;J. -L. Gardarein;L. Garzotti;P. Gaudio;E. Gauthier;D. F. Gear;S. J. Gee;B. Geiger;M. Gelfusa;S. Gerasimov;G. Gervasini;M. Gethins;Z. Ghani;M. Ghate;M. Gherendi;J. C. Giacalone;L. Giacomelli;C. S. Gibson;T. Giegerich;C. Gil;L. Gil;S. Gilligan;D. Gin;E. Giovannozzi;J. B. Girardo;C. Giroud;G. Giruzzi;S. Glöggler;J. Godwin;J. Goff;P. Gohil;V. Goloborod'ko;R. Gomes;B. Gonçalves;M. Goniche;M. Goodliffe;A. Goodyear;G. Gorini;M. Gosk;R. Goulding;A. Goussarov;R. Gowland;B. Graham;M. E. Graham;J. P. Graves;N. Grazier;P. Grazier;N. R. Green;H. Greuner;B. Grierson;F. S. Griph;C. Grisolia;D. Grist;M. Groth;R. Grove;C. N. Grundy;J. Grzonka;D. Guard;C. Guérard;C. Guillemaut;R. Guirlet;C. Gurl;H. H. Utoh;L. J. Hackett;S. Hacquin;A. Hagar;R. Hager;A. Hakola;M. Halitovs;S. J. Hall;S. P. Hallworth Cook;C. Hamlyn-Harris;K. Hammond;C. Harrington;J. Harrison;D. Harting;F. Hasenbeck;Y. Hatano;D. R. Hatch;T. D. V. Haupt;J. Hawes;N. C. Hawkes;J. Hawkins;P. Hawkins;P. W. Haydon;N. Hayter;S. Hazel;P. J. L. Heesterman;K. Heinola;C. Hellesen;T. Hellsten;W. Helou;O. N. Hemming;T. C. Hender;M. Henderson;S. S. Henderson;R. Henriques;D. Hepple;G. Hermon;P. Hertout;C. Hidalgo;E. G. Highcock;M. Hill;J. Hillairet;J. Hillesheim;D. Hillis;K. Hizanidis;A. Hjalmarsson;J. Hobirk;E. Hodille;C. H. A. Hogben;G. M. D. Hogeweij;A. Hollingsworth;S. Hollis;D. A. Homfray;J. Horáček;G. Hornung;A. R. Horton;L. D. Horton;L. Horvath;S. P. Hotchin;M. R. Hough;P. J. Howarth;A. Hubbard;A. Huber;V. Huber;T. M. Huddleston;M. Hughes;G. T. A. Huijsmans;C. L. Hunter;P. Huynh;A. M. Hynes;D. Iglesias;N. Imazawa;F. Imbeaux;M. Imríšek;M. Incelli;P. Innocente;M. Irishkin;I. Ivanova-Stanik;S. Jachmich;A. S. Jacobsen;P. Jacquet;J. Jansons;A. Jardin;A. Järvinen;F. Jaulmes;S. Jednoróg;I. Jenkins;C. Jeong;I. Jepu;E. Joffrin;R. Johnson;T. Johnson;J. Johnston;L. Joita;G. Jones;T. T. C. Jones;K. K. Hoshino;A. Kallenbach;K. Kamiya;J. Kaniewski;A. Kantor;A. Kappatou;J. Karhunen;D. Karkinsky;I. Karnowska;M. Kaufman;G. Kaveney;Y. Kazakov;V. Kazantzidis;D. L. Keeling;T. Keenan;J. Keep;M. Kempenaars;C. Kennedy;D. Kenny;J. Kent;O. N. Kent;E. Khilkevich;H. T. Kim;H. S. Kim;A. Kinch;C. king;D. King;R. F. King;D. J. Kinna;V. Kiptily;A. Kirk;K. Kirov;A. Kirschner;G. Kizane;C. Klepper;A. Klix;P. Knight;S. J. Knipe;S. Knott;T. Kobuchi;F. Köchl;G. Kocsis;I. Kodeli;L. Kogan;D. Kogut;S. Koivuranta;Y. Kominis;M. Köppen;B. Kos;T. Koskela;H. R. Koslowski;M. Koubiti;M. Kovari;E. Kowalska-Strzęciwilk;A. Krasilnikov;V. Krasilnikov;N. Krawczyk;M. Kresina;K. Krieger;A. Krivska;U. Kruezi;I. Książek;A. Kukushkin;A. Kundu;T. Kurki-Suonio;S. Kwak;R. Kwiatkowski;O. J. Kwon;L. Laguardia;A. Lahtinen;A. Laing;N. Lam;H. T. Lambertz;C. Lane;P. T. Lang;S. Lanthaler;J. Lapins;A. Lasa;J. R. Last;E. Łaszyńska;R. Lawless;A. Lawson;K. D. Lawson;A. Lazaros;E. Lazzaro;J. Leddy;S. Lee;X. Lefebvre;H. J. Leggate;J. Lehmann;M. Lehnen;D. Leichtle;P. Leichuer;F. Leipold;I. Lengar;M. Lennholm;E. Lerche;A. Lescinskis;S. Lesnoj;E. Letellier;M. Leyland;W. Leysen;L. Li;Y. Liang;J. Likonen;J. Linke;C. Linsmeier;B. Lipschultz;G. Liu;Y. Liu;V. P. Lo Schiavo;T. Loarer;A. Loarte;R. C. Lobel;B. Lomanowski;P. J. Lomas;J. Lönnroth;J. M. López;J. López-Razola;R. Lorenzini;U. Losada;J. J. Lovell;A. B. Loving;C. Lowry;T. Luce;R. M. A. Lucock;A. Lukin;C. Luna;M. Lungaroni;C. P. Lungu;M. Lungu;A. Lunniss;I. Lupelli;A. Lyssoivan;N. Macdonald;P. Macheta;K. Maczewa;B. Magesh;P. Maget;C. Maggi;H. Maier;J. Mailloux;T. Makkonen;R. Makwana;A. Malaquias;A. Malizia;P. Manas;A. Manning;M. E. Manso;P. Mantica;M. Mantsinen;A. Manzanares;P. Maquet;Y. Marandet;N. Marcenko;C. Marchetto;O. Marchuk;M. Marinelli;M. Marinucci;T. Markovič;D. Marocco;L. Marot;C. A. Marren;R. Marshal;A. Martin;Y. Martin;A. Martín de Aguilera;F. J. Martínez;J. R. Martín-Solís;Y. Martynova;S. Maruyama;A. Masiello;M. Maslov;S. Matejcik;M. Mattei;G. F. Matthews;F. Maviglia;M. Mayer;M. L. Mayoral;T. May-Smith;D. Mazon;C. Mazzotta;R. McAdams;P. J. McCarthy;K. G. McClements;O. McCormack;P. A. McCullen;D. McDonald;S. McIntosh;R. McKean;J. McKehon;R. C. Meadows;A. Meakins;F. Medina;M. Medland;S. Medley;S. Meigh;A. G. Meigs;G. Meisl;S. Meitner;L. Meneses;S. Menmuir;K. Mergia;I. R. Merrigan;P. Mertens;S. Meshchaninov;A. Messiaen;H. Meyer;S. Mianowski;R. Michling;D. Middleton-Gear;J. Miettunen;F. Militello;E. Militello-Asp;G. Miloshevsky;F. Mink;S. Minucci;Y. Miyoshi;J. Mlynář;D. Molina;I. Monakhov;M. Moneti;R. Mooney;S. Moradi;S. Mordijck;L. Moreira;R. Moreno;F. Moro;A. W. Morris;J. Morris;L. Moser;S. Mosher;D. Moulton;A. Murari;A. Muraro;S. Murphy;N. N. Asakura;Y. S. Na;F. Nabais;R. Naish;T. Nakano;E. Nardon;V. Naulin;M. F. F. Nave;I. Nedzelski;G. Nemtsev;F. Nespoli;A. Neto;R. Neu;V. S. Neverov;M. Newman;K. J. Nicholls;T. Nicolas;A. H. Nielsen;P. Nielsen;E. Nilsson;D. Nishijima;C. Noble;M. Nocente;D. Nodwell;K. Nordlund;H. Nordman;R. Nouailletas;I. Nunes;M. Oberkofler;T. Odupitan;M. T. Ogawa;T. O'Gorman;M. Okabayashi;R. Olney;O. Omolayo;M. O'Mullane;J. Ongena;F. Orsitto;J. Orszagh;B. I. Oswuigwe;R. Otin;A. Owen;R. Paccagnella;N. Pace;D. Pacella;L. W. Packer;A. Page;E. Pajuste;S. Palazzo;S. Pamela;S. Panja;P. Papp;R. Paprok;V. Parail;M. Park;F. Parra Diaz;M. Parsons;R. Pasqualotto;A. Patel;S. Pathak;D. Paton;H. Patten;A. Pau;E. Pawelec;C. Paz Soldan;A. Peackoc;I. J. Pearson;S. -P. Pehkonen;E. Peluso;C. Penot;A. Pereira;R. Pereira;P. P. Pereira Puglia;C. Perez von Thun;S. Peruzzo;S. Peschanyi;M. Peterka;P. Petersson;G. Petravich;A. Petre;N. Petrella;V. Petržilka;Y. Peysson;D. Pfefferlé;V. Philipps;M. Pillon;G. Pintsuk;P. Piovesan;A. Pires dos Reis;L. Piron;A. Pironti;F. Pisano;R. Pitts;F. Pizzo;V. Plyusnin;N. Pomaro;O. G. Pompilian;P. J. Pool;S. Popovichev;M. T. Porfiri;C. Porosnicu;M. Porton;G. Possnert;S. Potzel;T. Powell;J. Pozzi;V. Prajapati;R. Prakash;G. Prestopino;D. Price;M. Price;R. Price;P. Prior;R. Proudfoot;G. Pucella;P. Puglia;M. E. Puiatti;D. Pulley;K. Purahoo;T. Pütterich;E. Rachlew;M. Rack;R. Ragona;M. S. J. Rainford;A. Rakha;G. Ramogida;S. Ranjan;C. J. Rapson;J. J. Rasmussen;K. Rathod;G. Rattá;S. Ratynskaia;G. Ravera;C. Rayner;M. Rebai;D. Reece;A. Reed;D. Réfy;B. Regan;J. Regaña;M. Reich;N. Reid;F. Reimold;M. Reinhart;M. Reinke;D. Reiser;D. Rendell;C. Reux;S. D. A. Reyes Cortes;S. Reynolds;V. Riccardo;N. Richardson;K. Riddle;D. Rigamonti;F. G. Rimini;J. Risner;M. Riva;C. Roach;R. J. Robins;S. A. Robinson;T. Robinson;D. W. Robson;R. Roccella;R. Rodionov;P. Rodrigues;J. Rodriguez;V. Rohde;F. Romanelli;M. Romanelli;S. Romanelli;J. Romazanov;S. Rowe;M. Rubel;G. Rubinacci;G. Rubino;L. Ruchko;M. Ruiz;C. Ruset;J. Rzadkiewicz;S. Saarelma;R. Sabot;E. Safi;P. Sagar;G. Saibene;F. Saint-Laurent;M. Salewski;A. Salmi;R. Salmon;F. Salzedas;D. Samaddar;U. Samm;D. Sandiford;P. Santa;M. I. K. Santala;B. Santos;A. Santucci;F. Sartori;R. Sartori;O. Sauter;R. Scannell;T. Schlummer;K. Schmid;V. Schmidt;S. Schmuck;M. Schneider;K. Schöpf;D. Schwörer;S. D. Scott;G. Sergienko;M. Sertoli;A. Shabbir;S. E. Sharapov;A. Shaw;R. Shaw;H. Sheikh;A. Shepherd;A. Shevelev;A. Shumack;G. Sias;M. Sibbald;B. Sieglin;S. Silburn;A. Silva;C. Silva;P. A. Simmons;J. Simpson;J. Simpson-Hutchinson;A. Sinha;S. K. Sipilä;A. C. C. Sips;P. Sirén;A. Sirinelli;H. Sjöstrand;M. Skiba;R. Skilton;K. Slabkowska;B. Slade;N. Smith;P. G. Smith;R. Smith;T. J. Smith;M. Smithies;L. Snoj;S. Soare;E. R. Solano;A. Somers;C. Sommariva;P. Sonato;A. Sopplesa;J. Sousa;C. Sozzi;S. Spagnolo;T. Spelzini;F. Spineanu;G. Stables;I. Stamatelatos;M. F. Stamp;P. Staniec;G. Stankūnas;C. Stan-Sion;M. J. Stead;E. Stefanikova;I. Stepanov;A. V. Stephen;M. Stephen;A. Stevens;B. D. Stevens;J. Strachan;P. Strand;H. R. Strauss;P. Ström;G. Stubbs;W. Studholme;F. Subba;H. P. Summers;J. Svensson;Ł. Świderski;T. Szabolics;M. Szawlowski;G. Szepesi;T. T. Suzuki;B. Tál;T. Tala;A. R. Talbot;S. Talebzadeh;C. Taliercio;P. Tamain;C. Tame;W. Tang;M. Tardocchi;L. Taroni;D. Taylor;K. A. Taylor;D. Tegnered;G. Telesca;N. Teplova;D. Terranova;D. Testa;E. Tholerus;J. Thomas;J. D. Thomas;P. Thomas;A. Thompson;C. -A. Thompson;V. K. Thompson;L. Thorne;A. Thornton;A. S. Thrysøe;P. A. Tigwell;N. Tipton;I. Tiseanu;H. Tojo;M. Tokitani;P. Tolias;M. Tomeš;P. Tonner;M. Towndrow;P. Trimble;M. Tripsky;M. Tsalas;P. Tsavalas;D. Tskhakaya jun;I. Turner;M. M. Turner;M. Turnyanskiy;G. Tvalashvili;S. G. J. Tyrrell;A. Uccello;Z. Ul-Abidin;J. Uljanovs;D. Ulyatt;H. Urano;I. Uytdenhouwen;A. P. Vadgama;D. Valcarcel;M. Valentinuzzi;M. Valisa;P. Vallejos Olivares;M. Valovic;M. Van De Mortel;D. Van Eester;W. Van Renterghem;G. J. van Rooij;J. Varje;S. Varoutis;S. Vartanian;K. Vasava;T. Vasilopoulou;J. Vega;G. Verdoolaege;R. Verhoeven;C. Verona;G. Verona Rinati;E. Veshchev;N. Vianello;J. Vicente;E. Viezzer;S. Villari;F. Villone;P. Vincenzi;I. Vinyar;B. Viola;A. Vitins;Z. Vizvary;M. Vlad;I. Voitsekhovitch;P. Vondráček;N. Vora;T. Vu;W. W. Pires de Sa;B. Wakeling;C. W. F. Waldon;N. Walkden;M. Walker;R. Walker;M. Walsh;E. Wang;N. Wang;S. Warder;R. J. Warren;J. Waterhouse;N. W. Watkins;C. Watts;T. Wauters;A. Weckmann;J. Weiland;H. Weisen;M. Weiszflog;C. Wellstood;A. T. West;M. R. Wheatley;S. Whetham;A. M. Whitehead;B. D. Whitehead;A. M. Widdowson;S. Wiesen;J. Wilkinson;J. Williams;M. Williams;A. R. Wilson;D. J. Wilson;H. R. Wilson;J. Wilson;M. Wischmeier;G. Withenshaw;A. Withycombe;D. M. Witts;D. Wood;R. Wood;C. Woodley;S. Wray;J. Wright;J. C. Wright;J. Wu;S. Wukitch;A. Wynn;T. Xu;D. Yadikin;W. Yanling;L. Yao;V. Yavorskij;M. G. Yoo;C. Young;D. Young;I. D. Young;R. Young;J. Zacks;R. Zagorski;F. S. Zaitsev;R. Zanino;A. Zarins;K. D. Zastrow;M. Zerbini;W. Zhang;Y. Zhou;E. Zilli;V. Zoita;S. Zoletnik;I. Zychor
2018-01-01
Abstract
The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, δ = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electron-scale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement - a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/134742
Citazioni
ND
19
16
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.