Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay γ-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the235U fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with ±4.2% experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally ±3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the93Nb(n,2n)92mNb and27Al(n,a)24Na activation reactions (energy thresholds 10 MeV and 5 MeV, respectively). The total uncertainty on the calibration factors is ±6% for93Nb(n,2n)92mNb and ±8%27Al(n,a)24Na (1σ). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.
Batistoni, P.;Popovichev, S.;Ghani, Z.;Cufar, A.;Giacomelli, L.;Hawkins, P.;Keogh, K.;Jednorog, S.;Laszynska, E.;Loreti, S.;Peacock, A.;Pillon, M.;Price, R.;Reed, A.;Rigamonti, D.;Stephens, J.;Bielecki, J.;Conroy, S.;Dankowski, J.;Krasilnikov, V.;X. Litaudon;S. Abduallev;M. Abhangi;P. Abreu;M. Afzal;K. M. Aggarwal;T. Ahlgren;J. H. Ahn;L. Aho-Mantila;N. Aiba;M. Airila;R. Albanese;V. Aldred;D. Alegre;E. Alessi;P. Aleynikov;A. Alfier;A. Alkseev;M. Allinson;B. Alper;E. Alves;G. Ambrosino;R. Ambrosino;L. Amicucci;V. Amosov;E. Andersson Sundén;M. Angelone;M. Anghel;C. Angioni;L. Appel;C. Appelbee;P. Arena;M. Ariola;H. Arnichand;S. Arshad;A. Ash;N. Ashikawa;V. Aslanyan;O. Asunta;F. Auriemma;Y. Austin;L. Avotina;M. D. Axton;C. Ayres;M. Bacharis;A. Baciero;D. Baião;S. Bailey;A. Baker;I. Balboa;M. Balden;N. Balshaw;R. Bament;J. W. Banks;Y. F. Baranov;M. A. Barnard;D. Barnes;M. Barnes;R. Barnsley;A. Baron Wiechec;L. Barrera Orte;M. Baruzzo;V. Basiuk;M. Bassan;R. Bastow;A. Batista;P. Batistoni;R. Baughan;B. Bauvir;L. Baylor;B. Bazylev;J. Beal;P. S. Beaumont;M. Beckers;B. Beckett;A. Becoulet;N. Bekris;M. Beldishevski;K. Bell;F. Belli;M. Bellinger;É. Belonohy;N. Ben Ayed;N. A. Benterman;H. Bergsåker;J. Bernardo;M. Bernert;M. Berry;L. Bertalot;C. Besliu;M. Beurskens;B. Bieg;J. Bielecki;T. Biewer;M. Bigi;P. Bílková;F. Binda;A. Bisoffi;J. P. S. Bizarro;C. Björkas;J. Blackburn;K. Blackman;T. R. Blackman;P. Blanchard;P. Blatchford;V. Bobkov;A. Boboc;G. Bodnár;O. Bogar;I. Bolshakova;T. Bolzonella;N. Bonanomi;F. Bonelli;J. Boom;J. Booth;D. Borba;D. Borodin;I. Borodkina;A. Botrugno;C. Bottereau;P. Boulting;C. Bourdelle;M. Bowden;C. Bower;C. Bowman;T. Boyce;C. Boyd;H. J. Boyer;J. M. A. Bradshaw;V. Braic;R. Bravanec;B. Breizman;S. Bremond;P. D. Brennan;S. Breton;A. Brett;S. Brezinsek;M. D. J. Bright;M. Brix;W. Broeckx;M. Brombin;A. Brosławski;D. P. D. Brown;M. Brown;E. Bruno;J. Bucalossi;J. Buch;J. Buchanan;M. A. Buckley;R. Budny;H. Bufferand;M. Bulman;N. Bulmer;P. Bunting;P. Buratti;A. Burckhart;A. Buscarino;A. Busse;N. K. Butler;I. Bykov;J. Byrne;P. Cahyna;G. Calabrò;I. Calvo;Y. Camenen;P. Camp;D. C. Campling;J. Cane;B. Cannas;A. J. Capel;P. J. Card;A. Cardinali;P. Carman;M. Carr;D. Carralero;L. Carraro;B. B. Carvalho;I. Carvalho;P. Carvalho;F. J. Casson;C. Castaldo;N. Catarino;J. Caumont;F. Causa;R. Cavazzana;K. Cave-Ayland;M. Cavinato;M. Cecconello;S. Ceccuzzi;E. Cecil;A. Cenedese;R. Cesario;C. D. Challis;M. Chandler;D. Chandra;C. S. Chang;A. Chankin;I. T. Chapman;S. C. Chapman;M. Chernyshova;G. Chitarin;G. Ciraolo;D. Ciric;J. Citrin;F. Clairet;E. Clark;M. Clark;R. Clarkson;D. Clatworthy;C. Clements;M. Cleverly;J. P. Coad;P. A. Coates;A. Cobalt;V. Coccorese;V. Cocilovo;S. Coda;R. Coelho;J. W. Coenen;I. Coffey;L. Colas;S. Collins;D. Conka;S. Conroy;N. Conway;D. Coombs;D. Cooper;S. R. Cooper;C. Corradino;Y. Corre;G. Corrigan;S. Cortes;D. Coster;A. S. Couchman;M. P. Cox;T. Craciunescu;S. Cramp;R. Craven;F. Crisanti;G. Croci;D. Croft;K. Crombé;R. Crowe;N. Cruz;G. Cseh;A. Cufar;A. Cullen;M. Curuia;A. Czarnecka;H. Dabirikhah;P. Dalgliesh;S. Dalley;J. Dankowski;D. Darrow;O. Davies;W. Davis;C. Day;I. E. Day;M. De Bock;A. de Castro;E. de la Cal;E. de la Luna;G. De Masi;J. L. de Pablos;G. De Temmerman;G. De Tommasi;P. de Vries;K. Deakin;J. Deane;F. Degli Agostini;R. Dejarnac;E. Delabie;N. den Harder;R. O. Dendy;J. Denis;P. Denner;S. Devaux;P. Devynck;F. Di Maio;A. Di Siena;C. Di Troia;P. Dinca;R. D'Inca;B. Ding;T. Dittmar;H. Doerk;R. P. Doerner;T. Donné;S. E. Dorling;S. Dormido-Canto;S. Doswon;D. Douai;P. T. Doyle;A. Drenik;P. Drewelow;P. Drews;P. Duckworth;R. Dumont;P. Dumortier;D. Dunai;M. Dunne;I. Ďuran;F. Durodié;P. Dutta;B. P. Duval;R. Dux;K. Dylst;N. Dzysiuk;P. V. Edappala;J. Edmond;A. M. Edwards;J. Edwards;T. Eich;A. Ekedahl;R. El-Jorf;C. G. Elsmore;M. Enachescu;G. Ericsson;F. Eriksson;J. Eriksson;L. G. Eriksson;B. Esposito;S. Esquembri;H. G. Esser;D. Esteve;B. Evans;G. E. Evans;G. Evison;G. D. Ewart;D. Fagan;M. Faitsch;D. Falie;A. Fanni;A. Fasoli;J. M. Faustin;N. Fawlk;L. Fazendeiro;N. Fedorczak;R. C. Felton;K. Fenton;A. Fernades;H. Fernandes;J. Ferreira;J. A. Fessey;O. Février;O. Ficker;A. Field;S. Fietz;A. Figueiredo;J. Figueiredo;A. Fil;P. Finburg;M. Firdaouss;U. Fischer;L. Fittill;M. Fitzgerald;D. Flammini;J. Flanagan;C. Fleming;K. Flinders;N. Fonnesu;J. M. Fontdecaba;A. Formisano;L. Forsythe;L. Fortuna;E. Fortuna-Zalesna;M. Fortune;S. Foster;T. Franke;T. Franklin;M. Frasca;L. Frassinetti;M. Freisinger;R. Fresa;D. Frigione;V. Fuchs;D. Fuller;S. Futatani;J. Fyvie;K. Gál;D. Galassi;K. Gałązka;J. Galdon-Quiroga;J. Gallagher;D. Gallart;R. Galvão;X. Gao;Y. Gao;J. Garcia;A. Garcia-Carrasco;M. García-Muñoz;J. -L. Gardarein;L. Garzotti;P. Gaudio;E. Gauthier;D. F. Gear;S. J. Gee;B. Geiger;M. Gelfusa;S. Gerasimov;G. Gervasini;M. Gethins;Z. Ghani;M. Ghate;M. Gherendi;J. C. Giacalone;L. Giacomelli;C. S. Gibson;T. Giegerich;C. Gil;L. Gil;S. Gilligan;D. Gin;E. Giovannozzi;J. B. Girardo;C. Giroud;G. Giruzzi;S. Glöggler;J. Godwin;J. Goff;P. Gohil;V. Goloborod'ko;R. Gomes;B. Gonçalves;M. Goniche;M. Goodliffe;A. Goodyear;G. Gorini;M. Gosk;R. Goulding;A. Goussarov;R. Gowland;B. Graham;M. E. Graham;J. P. Graves;N. Grazier;P. Grazier;N. R. Green;H. Greuner;B. Grierson;F. S. Griph;C. Grisolia;D. Grist;M. Groth;R. Grove;C. N. Grundy;J. Grzonka;D. Guard;C. Guérard;C. Guillemaut;R. Guirlet;C. Gurl;H. H. Utoh;L. J. Hackett;S. Hacquin;A. Hagar;R. Hager;A. Hakola;M. Halitovs;S. J. Hall;S. P. Hallworth Cook;C. Hamlyn-Harris;K. Hammond;C. Harrington;J. Harrison;D. Harting;F. Hasenbeck;Y. Hatano;D. R. Hatch;T. D. V. Haupt;J. Hawes;N. C. Hawkes;J. Hawkins;P. Hawkins;P. W. Haydon;N. Hayter;S. Hazel;P. J. L. Heesterman;K. Heinola;C. Hellesen;T. Hellsten;W. Helou;O. N. Hemming;T. C. Hender;M. Henderson;S. S. Henderson;R. Henriques;D. Hepple;G. Hermon;P. Hertout;C. Hidalgo;E. G. Highcock;M. Hill;J. Hillairet;J. Hillesheim;D. Hillis;K. Hizanidis;A. Hjalmarsson;J. Hobirk;E. Hodille;C. H. A. Hogben;G. M. D. Hogeweij;A. Hollingsworth;S. Hollis;D. A. Homfray;J. Horáček;G. Hornung;A. R. Horton;L. D. Horton;L. Horvath;S. P. Hotchin;M. R. Hough;P. J. Howarth;A. Hubbard;A. Huber;V. Huber;T. M. Huddleston;M. Hughes;G. T. A. Huijsmans;C. L. Hunter;P. Huynh;A. M. Hynes;D. Iglesias;N. Imazawa;F. Imbeaux;M. Imríšek;M. Incelli;P. Innocente;M. Irishkin;I. Ivanova-Stanik;S. Jachmich;A. S. Jacobsen;P. Jacquet;J. Jansons;A. Jardin;A. Järvinen;F. Jaulmes;S. Jednoróg;I. Jenkins;C. Jeong;I. Jepu;E. Joffrin;R. Johnson;T. Johnson;J. Johnston;L. Joita;G. Jones;T. T. C. Jones;K. K. Hoshino;A. Kallenbach;K. Kamiya;J. Kaniewski;A. Kantor;A. Kappatou;J. Karhunen;D. Karkinsky;I. Karnowska;M. Kaufman;G. Kaveney;Y. Kazakov;V. Kazantzidis;D. L. Keeling;T. Keenan;J. Keep;M. Kempenaars;C. Kennedy;D. Kenny;J. Kent;O. N. Kent;E. Khilkevich;H. T. Kim;H. S. Kim;A. Kinch;C. king;D. King;R. F. King;D. J. Kinna;V. Kiptily;A. Kirk;K. Kirov;A. Kirschner;G. Kizane;C. Klepper;A. Klix;P. Knight;S. J. Knipe;S. Knott;T. Kobuchi;F. Köchl;G. Kocsis;I. Kodeli;L. Kogan;D. Kogut;S. Koivuranta;Y. Kominis;M. Köppen;B. Kos;T. Koskela;H. R. Koslowski;M. Koubiti;M. Kovari;E. Kowalska-Strzęciwilk;A. Krasilnikov;V. Krasilnikov;N. Krawczyk;M. Kresina;K. Krieger;A. Krivska;U. Kruezi;I. Książek;A. Kukushkin;A. Kundu;T. Kurki-Suonio;S. Kwak;R. Kwiatkowski;O. J. Kwon;L. Laguardia;A. Lahtinen;A. Laing;N. Lam;H. T. Lambertz;C. Lane;P. T. Lang;S. Lanthaler;J. Lapins;A. Lasa;J. R. Last;E. Łaszyńska;R. Lawless;A. Lawson;K. D. Lawson;A. Lazaros;E. Lazzaro;J. Leddy;S. Lee;X. Lefebvre;H. J. Leggate;J. Lehmann;M. Lehnen;D. Leichtle;P. Leichuer;F. Leipold;I. Lengar;M. Lennholm;E. Lerche;A. Lescinskis;S. Lesnoj;E. Letellier;M. Leyland;W. Leysen;L. Li;Y. Liang;J. Likonen;J. Linke;C. Linsmeier;B. Lipschultz;G. Liu;Y. Liu;V. P. Lo Schiavo;T. Loarer;A. Loarte;R. C. Lobel;B. Lomanowski;P. J. Lomas;J. Lönnroth;J. M. López;J. López-Razola;R. Lorenzini;U. Losada;J. J. Lovell;A. B. Loving;C. Lowry;T. Luce;R. M. A. Lucock;A. Lukin;C. Luna;M. Lungaroni;C. P. Lungu;M. Lungu;A. Lunniss;I. Lupelli;A. Lyssoivan;N. Macdonald;P. Macheta;K. Maczewa;B. Magesh;P. Maget;C. Maggi;H. Maier;J. Mailloux;T. Makkonen;R. Makwana;A. Malaquias;A. Malizia;P. Manas;A. Manning;M. E. Manso;P. Mantica;M. Mantsinen;A. Manzanares;P. Maquet;Y. Marandet;N. Marcenko;C. Marchetto;O. Marchuk;M. Marinelli;M. Marinucci;T. Markovič;D. Marocco;L. Marot;C. A. Marren;R. Marshal;A. Martin;Y. Martin;A. Martín de Aguilera;F. J. Martínez;J. R. Martín-Solís;Y. Martynova;S. Maruyama;A. Masiello;M. Maslov;S. Matejcik;M. Mattei;G. F. Matthews;F. Maviglia;M. Mayer;M. L. Mayoral;T. May-Smith;D. Mazon;C. Mazzotta;R. McAdams;P. J. McCarthy;K. G. McClements;O. McCormack;P. A. McCullen;D. McDonald;S. McIntosh;R. McKean;J. McKehon;R. C. Meadows;A. Meakins;F. Medina;M. Medland;S. Medley;S. Meigh;A. G. Meigs;G. Meisl;S. Meitner;L. Meneses;S. Menmuir;K. Mergia;I. R. Merrigan;P. Mertens;S. Meshchaninov;A. Messiaen;H. Meyer;S. Mianowski;R. Michling;D. Middleton-Gear;J. Miettunen;F. Militello;E. Militello-Asp;G. Miloshevsky;F. Mink;S. Minucci;Y. Miyoshi;J. Mlynář;D. Molina;I. Monakhov;M. Moneti;R. Mooney;S. Moradi;S. Mordijck;L. Moreira;R. Moreno;F. Moro;A. W. Morris;J. Morris;L. Moser;S. Mosher;D. Moulton;A. Murari;A. Muraro;S. Murphy;N. N. Asakura;Y. S. Na;F. Nabais;R. Naish;T. Nakano;E. Nardon;V. Naulin;M. F. F. Nave;I. Nedzelski;G. Nemtsev;F. Nespoli;A. Neto;R. Neu;V. S. Neverov;M. Newman;K. J. Nicholls;T. Nicolas;A. H. Nielsen;P. Nielsen;E. Nilsson;D. Nishijima;C. Noble;M. Nocente;D. Nodwell;K. Nordlund;H. Nordman;R. Nouailletas;I. Nunes;M. Oberkofler;T. Odupitan;M. T. Ogawa;T. O'Gorman;M. Okabayashi;R. Olney;O. Omolayo;M. O'Mullane;J. Ongena;F. Orsitto;J. Orszagh;B. I. Oswuigwe;R. Otin;A. Owen;R. Paccagnella;N. Pace;D. Pacella;L. W. Packer;A. Page;E. Pajuste;S. Palazzo;S. Pamela;S. Panja;P. Papp;R. Paprok;V. Parail;M. Park;F. Parra Diaz;M. Parsons;R. Pasqualotto;A. Patel;S. Pathak;D. Paton;H. Patten;A. Pau;E. Pawelec;C. Paz Soldan;A. Peackoc;I. J. Pearson;S. -P. Pehkonen;E. Peluso;C. Penot;A. Pereira;R. Pereira;P. P. Pereira Puglia;C. Perez von Thun;S. Peruzzo;S. Peschanyi;M. Peterka;P. Petersson;G. Petravich;A. Petre;N. Petrella;V. Petržilka;Y. Peysson;D. Pfefferlé;V. Philipps;M. Pillon;G. Pintsuk;P. Piovesan;A. Pires dos Reis;L. Piron;A. Pironti;F. Pisano;R. Pitts;F. Pizzo;V. Plyusnin;N. Pomaro;O. G. Pompilian;P. J. Pool;S. Popovichev;M. T. Porfiri;C. Porosnicu;M. Porton;G. Possnert;S. Potzel;T. Powell;J. Pozzi;V. Prajapati;R. Prakash;G. Prestopino;D. Price;M. Price;R. Price;P. Prior;R. Proudfoot;G. Pucella;P. Puglia;M. E. Puiatti;D. Pulley;K. Purahoo;T. Pütterich;E. Rachlew;M. Rack;R. Ragona;M. S. J. Rainford;A. Rakha;G. Ramogida;S. Ranjan;C. J. Rapson;J. J. Rasmussen;K. Rathod;G. Rattá;S. Ratynskaia;G. Ravera;C. Rayner;M. Rebai;D. Reece;A. Reed;D. Réfy;B. Regan;J. Regaña;M. Reich;N. Reid;F. Reimold;M. Reinhart;M. Reinke;D. Reiser;D. Rendell;C. Reux;S. D. A. Reyes Cortes;S. Reynolds;V. Riccardo;N. Richardson;K. Riddle;D. Rigamonti;F. G. Rimini;J. Risner;M. Riva;C. Roach;R. J. Robins;S. A. Robinson;T. Robinson;D. W. Robson;R. Roccella;R. Rodionov;P. Rodrigues;J. Rodriguez;V. Rohde;F. Romanelli;M. Romanelli;S. Romanelli;J. Romazanov;S. Rowe;M. Rubel;G. Rubinacci;G. Rubino;L. Ruchko;M. Ruiz;C. Ruset;J. Rzadkiewicz;S. Saarelma;R. Sabot;E. Safi;P. Sagar;G. Saibene;F. Saint-Laurent;M. Salewski;A. Salmi;R. Salmon;F. Salzedas;D. Samaddar;U. Samm;D. Sandiford;P. Santa;M. I. K. Santala;B. Santos;A. Santucci;F. Sartori;R. Sartori;O. Sauter;R. Scannell;T. Schlummer;K. Schmid;V. Schmidt;S. Schmuck;M. Schneider;K. Schöpf;D. Schwörer;S. D. Scott;G. Sergienko;M. Sertoli;A. Shabbir;S. E. Sharapov;A. Shaw;R. Shaw;H. Sheikh;A. Shepherd;A. Shevelev;A. Shumack;G. Sias;M. Sibbald;B. Sieglin;S. Silburn;A. Silva;C. Silva;P. A. Simmons;J. Simpson;J. Simpson-Hutchinson;A. Sinha;S. K. Sipilä;A. C. C. Sips;P. Sirén;A. Sirinelli;H. Sjöstrand;M. Skiba;R. Skilton;K. Slabkowska;B. Slade;N. Smith;P. G. Smith;R. Smith;T. J. Smith;M. Smithies;L. Snoj;S. Soare;E. R. Solano;A. Somers;C. Sommariva;P. Sonato;A. Sopplesa;J. Sousa;C. Sozzi;S. Spagnolo;T. Spelzini;F. Spineanu;G. Stables;I. Stamatelatos;M. F. Stamp;P. Staniec;G. Stankūnas;C. Stan-Sion;M. J. Stead;E. Stefanikova;I. Stepanov;A. V. Stephen;M. Stephen;A. Stevens;B. D. Stevens;J. Strachan;P. Strand;H. R. Strauss;P. Ström;G. Stubbs;W. Studholme;F. Subba;H. P. Summers;J. Svensson;Ł. Świderski;T. Szabolics;M. Szawlowski;G. Szepesi;T. T. Suzuki;B. Tál;T. Tala;A. R. Talbot;S. Talebzadeh;C. Taliercio;P. Tamain;C. Tame;W. Tang;M. Tardocchi;L. Taroni;D. Taylor;K. A. Taylor;D. Tegnered;G. Telesca;N. Teplova;D. Terranova;D. Testa;E. Tholerus;J. Thomas;J. D. Thomas;P. Thomas;A. Thompson;C. -A. Thompson;V. K. Thompson;L. Thorne;A. Thornton;A. S. Thrysøe;P. A. Tigwell;N. Tipton;I. Tiseanu;H. Tojo;M. Tokitani;P. Tolias;M. Tomeš;P. Tonner;M. Towndrow;P. Trimble;M. Tripsky;M. Tsalas;P. Tsavalas;D. Tskhakaya jun;I. Turner;M. M. Turner;M. Turnyanskiy;G. Tvalashvili;S. G. J. Tyrrell;A. Uccello;Z. Ul-Abidin;J. Uljanovs;D. Ulyatt;H. Urano;I. Uytdenhouwen;A. P. Vadgama;D. Valcarcel;M. Valentinuzzi;M. Valisa;P. Vallejos Olivares;M. Valovic;M. Van De Mortel;D. Van Eester;W. Van Renterghem;G. J. van Rooij;J. Varje;S. Varoutis;S. Vartanian;K. Vasava;T. Vasilopoulou;J. Vega;G. Verdoolaege;R. Verhoeven;C. Verona;G. Verona Rinati;E. Veshchev;N. Vianello;J. Vicente;E. Viezzer;S. Villari;F. Villone;P. Vincenzi;I. Vinyar;B. Viola;A. Vitins;Z. Vizvary;M. Vlad;I. Voitsekhovitch;P. Vondráček;N. Vora;T. Vu;W. W. Pires de Sa;B. Wakeling;C. W. F. Waldon;N. Walkden;M. Walker;R. Walker;M. Walsh;E. Wang;N. Wang;S. Warder;R. J. Warren;J. Waterhouse;N. W. Watkins;C. Watts;T. Wauters;A. Weckmann;J. Weiland;H. Weisen;M. Weiszflog;C. Wellstood;A. T. West;M. R. Wheatley;S. Whetham;A. M. Whitehead;B. D. Whitehead;A. M. Widdowson;S. Wiesen;J. Wilkinson;J. Williams;M. Williams;A. R. Wilson;D. J. Wilson;H. R. Wilson;J. Wilson;M. Wischmeier;G. Withenshaw;A. Withycombe;D. M. Witts;D. Wood;R. Wood;C. Woodley;S. Wray;J. Wright;J. C. Wright;J. Wu;S. Wukitch;A. Wynn;T. Xu;D. Yadikin;W. Yanling;L. Yao;V. Yavorskij;M. G. Yoo;C. Young;D. Young;I. D. Young;R. Young;J. Zacks;R. Zagorski;F. S. Zaitsev;R. Zanino;A. Zarins;K. D. Zastrow;M. Zerbini;W. Zhang;Y. Zhou;E. Zilli;V. Zoita;S. Zoletnik;I. Zychor
2018-01-01
Abstract
A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay γ-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the235U fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with ±4.2% experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally ±3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the93Nb(n,2n)92mNb and27Al(n,a)24Na activation reactions (energy thresholds 10 MeV and 5 MeV, respectively). The total uncertainty on the calibration factors is ±6% for93Nb(n,2n)92mNb and ±8%27Al(n,a)24Na (1σ). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/134557
Citazioni
ND
26
28
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.