Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for n ≥ 1, H(4n−1, q2) has a maximal partial spread of size q2n+ 1, H(4n + 1, q2) has a maximal partial spread of size q2n+1+ 1 and, for n ≥ 2, Q+(4n-1, q), Q(4n-2, q), W(4n − 1, q), q even, W(4n-3, q), q even, have a maximal partial spread of size qn+ 1.

Maximal partial spreads of polar spaces

Cossidente, Antonio;Pavese, Francesco
2017-01-01

Abstract

Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for n ≥ 1, H(4n−1, q2) has a maximal partial spread of size q2n+ 1, H(4n + 1, q2) has a maximal partial spread of size q2n+1+ 1 and, for n ≥ 2, Q+(4n-1, q), Q(4n-2, q), W(4n − 1, q), q even, W(4n-3, q), q even, have a maximal partial spread of size qn+ 1.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/131762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact