In this work we address the phenomena at the basis of the performance loss in a Li-O2 cell operating in the presence of a LiTFSI/TEGDME salt/solvent couple and a porous carbonaceous cathode. The cell was discharged/charged applying both voltage and capacity limits, and the effects of repeated galvanostatic cycling were addressed. The ex-situ characterization of carbonaceous cathodes in correspondence of different cut-off voltages was based on vibrational spectroscopies, transmission electron microscopy and X-ray photoelectron spectroscopy. The reversible precipitation/decomposition of undesired products deriving from degradation of both carbon cathode and ethereal solvent is pointed out within a single voltage limited (2.0 - 4.6 V) discharge/charge cycle, whereas their irreversible accumulation on the surface of the electrode results after 100 capacity limited cycles. At the same time, the presence of polar degradation products (carbonates, carboxylates) at the cathode surface is accompanied by the build-up of a surface electric potential gradient, as revealed by differential binding energy shifts resulting from C 1s photoelectron spectra. This effect, seldom reported for Li-ion batteries, is for the first time put in evidence for a Li-O2 cell. Furthermore, the use of TFSI- anion is shown to lead to carbonate based degradation products not involving the formation of Li2CO3. The peculiar occurrence of such degradation phenomena are attributed to the intrinsic low-donor number characteristic of the TFSI- anion.

Noticeable role of TFSI- anion in the carbon cathode degradation of Li-O2 cells

BRUTTI, SERGIO;
2017

Abstract

In this work we address the phenomena at the basis of the performance loss in a Li-O2 cell operating in the presence of a LiTFSI/TEGDME salt/solvent couple and a porous carbonaceous cathode. The cell was discharged/charged applying both voltage and capacity limits, and the effects of repeated galvanostatic cycling were addressed. The ex-situ characterization of carbonaceous cathodes in correspondence of different cut-off voltages was based on vibrational spectroscopies, transmission electron microscopy and X-ray photoelectron spectroscopy. The reversible precipitation/decomposition of undesired products deriving from degradation of both carbon cathode and ethereal solvent is pointed out within a single voltage limited (2.0 - 4.6 V) discharge/charge cycle, whereas their irreversible accumulation on the surface of the electrode results after 100 capacity limited cycles. At the same time, the presence of polar degradation products (carbonates, carboxylates) at the cathode surface is accompanied by the build-up of a surface electric potential gradient, as revealed by differential binding energy shifts resulting from C 1s photoelectron spectra. This effect, seldom reported for Li-ion batteries, is for the first time put in evidence for a Li-O2 cell. Furthermore, the use of TFSI- anion is shown to lead to carbonate based degradation products not involving the formation of Li2CO3. The peculiar occurrence of such degradation phenomena are attributed to the intrinsic low-donor number characteristic of the TFSI- anion.
File in questo prodotto:
File Dimensione Formato  
ACS_AMI.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 5.21 MB
Formato Adobe PDF
5.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/128518
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact