Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Efficient, real-time and automated data analysis is one of the key elements for achieving scientific success in complex engineering and physical systems, two examples of which include the JET and ITER tokamaks. One problem which is common to these fields is the determination of the pulsation modes from an irregularly sampled time series. To this end, there are a wealth of signal processing techniques that are being applied to post-pulse and real-time data analysis in such complex systems. Here, we wish to present a review of the applications of a method based on the sparse representation of signals, using examples of the synergies that can be exploited when combining ideas and methods from very different fields, such as astronomy, astrophysics and thermonuclear fusion plasmas. Examples of this work in astronomy and astrophysics are the analysis of pulsation modes in various classes of stars and the orbit determination software of the Pioneer spacecraft. Two examples of this work in thermonuclear fusion plasmas include the detection of magneto-hydrodynamic instabilities, which is now performed routinely in JET in real-time on a sub-millisecond time scale, and the studies leading to the optimization of the magnetic diagnostic system in ITER and TCV. These questions have been solved by formulating them as inverse problems, despite the fact that these applicative frameworks are extremely different from the classical use of sparse representations, from both the theoretical and computational point of view. The requirements, prospects and ideas for the signal processing and real-time data analysis applications of this method to the routine operation of ITER will also be discussed. Finally, a very recent development has been the attempt to apply this method to the deconvolution of the measurement of electric potential performed during a ground-based survey of a proto-Villanovian necropolis in central Italy.
Sparse representation of signals: From astrophysics to real-time data analysis for fusion plasmas and system optimization analysis for ITER and TCV
Testa, D.;Carfantan, H.;Albergante, M.;Blanchard, P.;Bourguignon, S.;Fasoli, A.;Goodyear, A.;Klein, A.;Lister, J. B.;Panis, T.;Abhangi, M.;Abreu, P.;Aftanas, M.;Afzal, M.;Aggarwal, K. M.;Aho Mantila, L.;Ahonen, E.;Aints, M.;Airila, M.;Albanese, R.;Alegre, D.;Alessi, E.;Aleynikov, P.;Alfier, A.;Alkseev, A.;Allan, P.;Almaviva, S.;Alonso, A.;Alper, B.;Alsworth, I.;Alves, D.;Ambrosino, G.;Ambrosino, R.;Amosov, V.;Andersson, F.;Andersson Sunde´n, E.;Angelone, M.;Anghel, A.;Anghel, M.;Angioni, C.;Appel, L.;Apruzzese, G.;Arena, P.;Ariola, M.;Arnichand, H.;Arnoux, G.;Arshad, S.;Ash, A.;Asp, E.;Asunta, O.;Cooper, D.;Cooper, S. R.;Corre, Y.;Corrigan, G.;Cortes, S.;Coster, D.;Couchman, A. S.;Cox, M.;Cox, M. P.;Cox, P.;Craciunescu, T.;Cramp, S.;Crisanti, F.;Cristescu, I.;Croci, G.;Croft, O.;Crombe, K.;Crowe, R.;Cruz, N.;Cseh, G.;Cull, K.;Cupido, L.;Curran, D.;Curuia, M.;Czarnecka, A.;Czarski, T.;Dalley, S.;Dalziel, A.;Darrow, D.;Davies, R.;Davis, W.;Day, C.;Day, I. E.;de la Cal, E.;de la Luna, E.;De Magistris, M.;de Pablos, J. L.;De Tommasi, G.;de Vries, P. C.;Deakin, K.;Deane, J.;Decker, J.;Degli Agostini, F.;Dejarnac, R.;Delabie, E.;den Harder, N.;Dendy, R. O.;Denner, P.;Devaux, S.;Devynck, P.;Di Maio, F.;Di Pace, L.;Dittmar, T.;Dodt, D.;Donne, T.;Dooley, P.;Dorling, S. E.;Dormido Canto, S.;Doswon, S.;Douai, D.;Doyle, P. T.;Dreischuh, T.;Drewelow, P.;Drozdov, V.;Drozdowicz, K.;Dumont, R.;Dumortier, P.;Atanasiu, C. V.;Austin, Y.;Avotina, L.;Axton, M. D.;Dunai, D.;Dunne, M.;Dˇuran, I.;Durodie, F.;Ayres, C.;Bachmann, C.;Baciero, A.;Baia˜o, D.;Bailescu, V.;Baiocchi, B.;Baker, A.;Baker, R. A.;Balboa, I.;Balden, M.;Balshaw, N.;Bament, R.;Banks, J. W.;Baranov, Y. F.;Barlow, I. L.;Barnard, M. A.;Barnes, D.;Barnsley, R.;Baron Wiechec, A.;Baruzzo, M.;Basiuk, V.;Bassan, M.;Bastow, R.;Batista, A.;Batistoni, P.;Bauer, R.;Bauvir, B.;Bazylev, B.;Beal, J.;Beaumont, P. S.;Becoulet, A.;Bednarczyk, P.;Bekris, N.;Beldishevski, M.;Bell, K.;Belli, F.;Dutta, P.;Duval, B.;Dux, R.;Dylst, K.;Dzysiuk, N.;Edappala, P. V.;Edwards, A. M.;Eich, T.h.;Ekedahl, A.;Elevant, T.;El Jorf, R.;Elsmore, C. G.;Ericsson, G.;Eriksson, A.;Eriksson, J.;Eriksson, L. G.;Esposito, B.;Esser, H. G.;Esteve, D.;Evans, G. E.;Evans, J.;Ewart, G. D.;Ewers, D. T.;Fagan, D.;Falie, D.;Farthing, J. W.;Fasoli, A.;Fattorini, L.;Faugeras, B.;Faustin, J.;Fawlk, N.;Federici, G.;Fedorczak, N.;Felton, R. C.;Fenzi, C.;Fernades, A.;Fernandes, H.;Ferreira, J.;Bellinger, M.;Belo, J. K.;Belo, P.;Belonohy, E.´.;Fessey, J. A.;Figini, L.;Figueiredo, A.;Figueiredo, J.;Benterman, N. A.;Bergsåker, H.;Bernardo, J.;Bernert, M.;Berry, M.;Bertalot, L.;Beurskens, M. N. A.;Bieg, B.;Bielecki, J.;Biewer, T.;Bigi, M.;B´ılkova, P.;Binda, F.;Bizarro, J. P. S.;Bjo¨ rkas, C.;Blackman, K.;Blackman, T. R.;Blanchard, P.;Blanco, E.;Blatchford, P.;Bobkov, V.;Boboc, A.;Bodna´r, G.;Bogar, O.;Bolzonella, T.;Boncagni, L.;Bonham, R.;Bonheure, G.;Boom, J.;Booth, J.;Borba, D.;Borodin, D.;Botrugno, A.;Boulbe, C.;Boulting, P.;Bovert, K. V.;Bowden, M.;Bower, C.;Boyce, T.;Boyer, H. J.;Bradshaw, J. M. A.;Braic, V.;Breizman, B.;Bremond, S.;Brennan, P. D.;Brett, A.;Brezinsek, S.;Bright, M. D. J.;Brix, M.;Broeckx, W.;Brombin, M.;Brown, B. C.;Brown, D. P. D.;Brown, M.;Bruno, E.;Bucalossi, J.;Buch, J.;Buckley, M. A.;Bucko, K.;Budny, R.;Bufferand, H.;Bulman, M.;Bulmer, N.;Bunting, P.;Buratti, P.;Burcea, G.;Burckhart, A.;Buscarino, A.;Butcher, P. R.;Butler, N. K.;Bykov, I.;Byrne, J.;Byszuk, A.;Cackett, A.;Cahyna, P.;Cain, G.;Calabro, G.;Callaghan, C. P.;Campling, D. C.;Cane, J.;Cannas, B.;Capel, A. J.;Caputano, M.;Card, P. J.;Cardinali, A.;Carman, P.;Carralero, D.;Carraro, L.;Carvalho, B. B.;Carvalho, I.;Carvalho, P.;Casson, F. J.;Castaldo, C.;Cavazzana, R.;Cavinato, M.;Cazzaniga, A.;Cecconello, M.;Cecil, E.;Cenedese, A.;Centioli, C.;Cesario, R.;Challis, C. D.;Chandler, M.;Chandra, D.;Chang, C. S.;Chankin, A.;Chapman, I. T.;Chapman, S. C.;Chernyshova, M.;Chiru, P.;Chitarin, G.;Chouli, B.;Chung, N.;Ciraolo, G.;Ciric, D.;Citrin, J.;Clairet, F.;Clark, E.;Clatworthy, D.;Clay, R.;Clever, M.;Coad, J. P.;Coates, P. A.;Coccorese, V.;Cocilovo, V.;Coda, S.;Coelho, R.;Coenen, J. W.;Coffey, I.;Colas, L.;Collins, S.;Conboy, J. E.;Conroy, S.;Cook, N.;Coombs, D.;Fil, A.;Finburg, P.;Firdaouss, M.;Fischer, U.;Fittill, L.;Fitzgerald, M.;Flammini, D.;Flanagan, J.;Fleming, C.;Flinders, K.;Formisano, A.;Forsythe, L.;Fortuna, L.;Fortune, M.;Frasca, M.;Frassinetti, L.;Freisinger, M.;FRESA, RAFFAELE;Frigione, D.;Fuchs, V.;Fyvie, J.;Gadomska, M.;Ga´l, K.;Galperti, C.;Galva˜o, R.;Gao, X.;Garavaglia, S.;Garcia, J.;Garcia Carrasco, A.;Garc´ıa Munoz, M.;Gardner, M.;Garzotti, L.;Gaudio, P.;Gauthier, E.;Gaze, J. W.;Gear, D. F.;Gee, S. J.;Gelfusa, M.;Genangeli, E.;Gerasimov, S.;Gervasini, G.;Ghate, M.;Gherendi, M.;Giacalone, J. C.;Giacomelli, L.;Gibson, C. S.;Giegerich, T.;Gin, D.;Giovannozzi, E.;Girardo, J. B.;Giroud, C.;Giruzzi, G.;Gleason Gonzalez, C.;Godwin, J.;Gohil, P.;Go´ jska, A.;Goloborod’Ko, V.;Gomes, R.;Gonc¸alves, B.;Goniche, M.;Gonzalez, S.;Goodsell, B.;Goodyear, A.;Gorini, G.;Goussarov, A.;Graham, B.;Graham, M. E.;Graves, J.;Grazier, N.;Green, N. R.;Greuner, H.;Grigore, E.;Griph, F. S.;Grisolia, C.;Grist, D.;Groth, M.;Grundy, C. N.;Gryaznevich, M.;Guard, D.;Gubb, D.;Guillemaut, C.;Guo, Y.;Utoh, H. H.;Hackett, L. J.;Hacquin, S.;Hagar, A.;Hakola, A.;Halitovs, M.;Hall, S. J.;Hallworth Cook, S. P.;Hammond, K.;Hart, J.;Harting, D.;Hartmann, N.;Haupt, T. D. V.;Hawkes, N. C.;Hawkins, J.;Haydon, P. W.;Hazel, S.;Heesterman, P. J. L.;Heinola, K.;Hellesen, C.;Hellsten, T.;Helou, W.;Hemming, O. N.;Hender, T. C.;Henderson, M.;Henriques, R.;Hepple, D.;Hermon, G.;Hidalgo, C.;Highcock, E. G.;Hill, J. W.;Hill, M.;Hillairet, J.;Hillesheim, J.;Hillis, D.;Hjalmarsson, A.;Hobirk, J.;Hogben, C. H. A.;Hogeweij, G. M. D.;Homfray, D. A.;Hora´cˇek, J.;Horton, A. R.;Horton, L. D.;Hotchin, S. P.;Hough, M. R.;Howarth, P. J.;Huber, A.;Huddleston, T. M.;Hughes, M.;Hunter, C. L.;Hurzlmeier, H.;Huygen, S.;Huynh, P.;Igitkhanov, J.;Iglesias, D.;Imr´ısˇek, M.;Ivanova, D.;Ivanova Stanik, I.;Ivings, E.;Jachmich, S.;Jacobsen, A. S.;Jacquet, P.;Jakubowska, K.;James, J.;Janky, F.;Ja¨rvinen, A.;Jaulmes, F.;Jednorog, S.;Jenkins, C.;Jenkins, I.;Jesˇko, K.;Joffrin, E.;Johnson, R.;Johnson, T.;Joita, L.;Jones, G.;Jones, T. T. C.;Joyce, L.;Jupe´n, C.;Hoshino, K. K.;Kallenbach, A.;Kalupin, D.;Kamiya, K.;Kaniewski, J.;Kantor, A.;Karhunen, J.;Kasprowicz, G.;Kaveney, G.;Kazakov, Y.;Keeling, D. L.;Keep, J.;Kempenaars, M.;Kennedy, C.;Kenny, D.;Khilkevich, E.;Kiisk, M.;Kim, H. T.;Kim, H. S.;King, C.;King, D.;King, R. F.;Kinna, D. J.;Kiptily, V.;Kirov, K.;Kirschner, A.;Kizane, G.;Klepper, C.;Knaup, M.;Knipe, S. J.;Kobuchi, T.;Ko¨ chl, F.;Kocsis, G.;Kogut, D.;Koivuranta, S.;Ko¨ ppen, M.;Koskela, T.;Koslowski, H. R.;Kotov, V.;Kowalska Strze˛ciwilk, E.;Krasilnikov, A.;Krasilnikov, V.;Kreter, A.;Krieger, K.;Krivchenkov, Y.;Krivska, A.;Kruezi, U.;Ksiazek, I.;Kukushkin, A.;Kundu, A.;Kurki Suonio, T.;Kwon, O. J.;Kyrytsya, V.;Laan, M.;Labate, C.;Laguardia, L.;Lam, N.;Lane, C.;Lang, P. T.;Lapins, J.;Lasa, A.;Last, J. R.;Lawson, A.;Lawson, K. D.;Lazaros, A.;Lazzaro, E.;Lee, S.;Leggate, H. J.;Lehnen, M.;Leichtle, D.;Leichuer, P.;Leipold, F.;Lengar, I.;Lennholm, M.;Lerche, E.;Leyland, M.;Leysen, W.;Liang, Y.;Likonen, J.;Lindholm, V.;Linke, J.;Linsmeier, C.h.;Lipschultz, B.;Litaudon, X.;Liu, G.;Liu, Y.;Lo Schiavo, V. P.;Loarer, T.;Loarte, A.;Lobel, R. C.;Lohr, N.;Lomas, P. J.;Lo¨ nnroth, J.;Lo´ pez, J.;Lo´ pez, J. M.;Louche, F.;Loving, A. B.;Lowbridge, S.;Lowry, C.;Luce, T.;Lucock, R. M. A.;Lukin, A.;Lungu, A. M.;Lungu, C. P.;Lupelli, I.;Lyssoivan, A.;Macheta, P.;Mackenzie, A. S.;Maddaluno, G.;Maddison, G. P.;Magesh, B.;Maget, P.;Maggi, C. F.;Maier, H.;Mailloux, J.;Maj, A.;Makkonen, T.;Makwana, R.;Malaquias, A.;Mansffield, F.;Mansfield, M.;Manso, M. E.;Mantica, P.;Mantsinen, M.;Manzanares, A.;Marandet, Y.;Marcenko, N.;Marchetto, C.;Marchuk, O.;Marinelli, M.;Marinucci, M.;Markovicˇ, T.;Marocco, D.;Marot, L.;Marren, C. A.;Marsen, S.;Marshal, R.;Martin, A.;Martin, D. L.;Martin, Y.;Mart´ın de Aguilera, A.;Mart´ın Sol´ıs, J. R.;Masiello, A.;Maslov, M.;Maslova, V.;Matejcik, S.;Mattei, M.;Matthews, G. F.;Matveev, D.;Matveev, M.;Maviglia, F.;Mayer, M.;Mayoral, M. L.;Mazon, D.;Mazzotta, C.;Mcadams, R.;Mccarthy, P. J.;Mcclements, K. G.;Mccormick, K.;Mccullen, P. A.;Mcdonald, D.;Mcgregor, R.;Mckean, R.;Mckehon, J.;Mckinley, R.;Meadows, I.;Meadows, R. C.;Medina, F.;Medland, M.;Medley, S.;Meigh, S.;Meigs, A. G.;Meneses, L.;Menmuir, S.;Merrigan, I. R.;Mertens, P.h.;Meshchaninov, S.;Messiaen, A.;Meszaros, B.;Meyer, H.;Miano, G.;Michling, R.;Middleton Gear, D.;Miettunen, J.;Migliucci, P.;Militello Asp, E.;Minucci, S.;Mirizzi, F.;Miyoshi, Y.;Mlyna´ˇr, J.;Monakhov, I.;Monier Garbet, P.;Mooney, R.;Moradi, S.;Mordijck, S.;Moreira, L.;Moreno, R.;Morgan, P. D.;Morgan, R.;Morley, L.;Morlock, C.;Morris, A. W.;Morris, J.;Moser, L.;Moulton, D.;Murari, A.;Muraro, A.;Mustata, I.;Asakura, N. N.;Nabais, F.;Nakano, T.;Nardon, E.;Naulin, V.;Nave, M. F. F.;Nedzelski, I.;Neethiraj, N.;Nemtsev, G.;Nespoli, F.;Neto, A.;Neu, R.;Neubauer, O.;Newman, M.;Nicholls, K. J.;Nicolai, D.;Nicolas, T.;Nieckchen, P.;Nielsen, P.;Nightingale, M. P. S.;Nilsson, E.;Nishijima, D.;Noble, C.;Nocente, M.;Nodwell, D.;Nordman, H.;Nunes, I.;O’Meara, B.;Oberkofler, M.;Obryk, B.;Odupitan, T.;Ogawa, M. T.;O’Gorman, T.;Okabayashi, M.;Olariu, S.;O’Mullane, M.;Ongena, J.;Orsitto, F.;Oswuigwe, B. I.;Pace, N.;Pacella, D.;Page, A.;Paget, A.;Pagett, D.;Pajuste, E.;Palazzo, S.;Pamela, J.;Pamela, S.;Panin, A.;Panja, S.;Papp, P.;Parail, V.;Paris, P.;Parish, S. C. W.;Park, M.;Parsloe, A.;Pasqualotto, R.;Pearson, I. J.;Pedrosa, M. A.;Pereira, R.;Perelli Cippo, E.;Thun, C.h. Perez von;Perez Von Thun, C.;Pericoli Ridolfini, V.;Perona, A.;Peruzzo, S.;Peschanyi, S.;Peterka, M.;Petersson, P.;Petravich, G.;Petrzˇilka, V.;Pfefferle, D.;Philipps, V.;Pietropaolo, A.;Pillon, M.;Pintsuk, G.;Piovesan, P.;Pires dos Reis, A.;Pironti, A.;Pisano, F.;Pitts, R.;Plusczyk, C.;Plyusnin, V.;Pomaro, N.;Pompilian, O.;Pool, P. J.;Popovichev, S.;Porcelli, F.;Porosnicu, C.;Porton, M.;Pospieszczyk, A.;Possnert, G.;Potzel, S.;Powell, T.;Pozniak, K.;Pozzi, J.;Prajapati, V.;Prakash, R.;Prestopino, G.;Price, D.;Price, R.;Prior, P.;Prokopowicz, R.;Proudfoot, R.;Puglia, P.;Puiatti, M. E.;Pulley, D.;Purahoo, K.;Tterich, T.h. Pu¨;Quercia, A.;Rachlew, E.;Rack, M.;Raeder, J.;Rainford, M. S. J.;Ramogida, G.;Ranjan, S.;Rasmussen, J.;Rasmussen, J. J.;Rathod, K.;Ratta, G.;Rayner, C.;Rebai, M.;Reece, D.;Reed, A.;Re´fy, D.;Regan, B.;Regana, J.;Reich, M.;Reid, P.;Reinelt, M.;Reinke, M. L.;Reinke, M.;Reiser, D.;Reiter, D.;Rendell, D.;Reux, C.;Riccardo, V.;Rimini, F. G.;Riva, M.;Roberts, J. E. C.;Robins, R. J.;Robinson, S. A.;Robinson, T.;Robson, D. W.;Roddick, P.;Rodionov, R.;Rohde, V.;Romanelli, F.;Romanelli, M.;Romanelli, S.;Romano, A.;Rowe, D.;Rowe, S.;Rowley, A.;Rubel, M.;Rubinacci, G.;Ruchko, L.;Ruiz, M.;Ruset, C.;Ryc, L.;Rzadkiewicz, J.;Saarelma, S.;Sabot, R.;Sadakov, S.;Safi, E.;Sagar, P.;Saibene, G.;Saint Laurent, F.;Salewski, M.;Salmi, A.;Salzedas, F.;Samm, U.;Sandiford, D.;Sandquist, P.;Santa, P.;Santala, M. I. K.;Sartori, F.;Sartori, R.;Saunders, R.;Sauter, O.;Scannell, R.;Scarabosio, A.;Schlummer, T.;Schmidt, V.;Schmitz, O.;Schmuck, S.;Schneider, M.;Scholz, M.;Scho¨ pf, K.;Schweer, B.;Sergienko, G.;Serikov, A.;Sertoli, M.;Shabbir, A.;Shannon, M.;Shannon, M. M. J.;Sharapov, S. E.;Shaw, I.;Shaw, S. R.;Shepherd, A.;Shevelev, A.;Shumack, A.;Sibbald, M.;Sieglin, B.;Silva, C.;Simmons, P. A.;Sinha, A.;Sipila, S. K.;Sips, A. C. C.;Sire´n, P.;Sirinelli, A.;Sjo¨ strand, H.;Skiba, M.;Skilton, R.;Slade, B.;Smith, N.;Smith, P. G.;Smith, T. J.;Snoj, L.;Soare, S.;Solano, E. R.;Soldatov, S.;Sonato, P.;Sopplesa, A.;Sousa, J.;Sowden, C. B. C.;Sozzi, C.;Sparkes, A.;Spelzini, T.;Spineanu, F.;Stables, G.;Stamatelatos, I.;Stamp, M. F.;Stancalie, V.;Stankiewicz, R.;Stanku¯ nas, G.;Stano, M.;Stan Sion, C.;Starkey, D. E.;Stead, M. J.;Stejner, M.;Stephen, A. V.;Stephen, M.;Stevens, B. D.;Stoyanov, D.;Strachan, J.;Strand, P.;Stransky, M.;Stro¨ m, P.;Stubbs, G.;Studholme, W.;Subba, F.;Summers, H. P.;Sun, Y.;Svensson, J.;Sykes, N.;Syme, B. D.;Szabolics, T.;Szepesi, G.;Szydlowski, A.;Suzuki, T. T.;Tabare´s, F.;Takalo, V.;Ta´l, B.;Tala, T.;Talbot, A. R.;Taliercio, C.;Tamain, P.;Tame, C.;Tardocchi, M.;Taroni, L.;Taylor, K. A.;Telesca, G.;Teplova, N.;Terra, A.;Testa, D.;Teuchner, B.;Tholerus, S.;Thomas, F.;Thomas, J. D.;Thomas, P.;Thompson, A.;Thompson, C. A.;Thompson, V. K.;Thomson, L.;Thorne, L.;Tigwell, P. A.;Tipton, N.;Tiseanu, I.;Tojo, H.;Tokar, M. Z.;Tomesˇ, M.;Tonner, P.;Tosti, S.;Towndrow, M.;Trimble, P.;Tripsky, M.;Tsalas, M.;Tsitrone, E.;Tskhakaya jun, D.;Tudisco, O.;Turner, I.;Turner, M. M.;Turnyanskiy, M.;Tvalashvili, G.;Tyrrell, S. G. J.;Ul Abidin, Z.;Ulyatt, D.;Unterberg, B.;Urano, H.;Uytdenhouwen, I.;Vadgama, A. P.;Valcarcel, D.;Valisa, M.;Valovic, M.;Van Eester, D.;Van Renterghem, W.;van Rooij, G. J.;Varandas, C. A. F.;Varoutis, S.;Vartanian, S.;Vasava, K.;Vdovin, V.;Vega, J.;Verdoolaege, G.;Verhoeven, R.;Verona, C.;Vervier, M.;Veshchev, E.;Ve´zinet, D.;Vicente, J.;Villari, S.;Villone, F.;Vinyar, I.;Viola, B.;Vitelli, R.;Vitins, A.;Vlad, M.;Voitsekhovitch, I.;Vondra´cˇek, P.;Vrancken, M.;Pires de Sa, W. W.;Waldon, C. W. F.;Walker, M.;Walsh, M.;Warren, R. J.;Waterhouse, J.;Watkins, N. W.;Watts, C.;Wauters, T.;Way, M. W.;Webster, A.;Weckmann, A.;Weiland, J.;Weisen, H.;Weiszflog, M.;Welte, S.;Wendel, J.;Wenninger, R.;West, A. T.;Wheatley, M. R.;Whetham, S.;Whitehead, A. M.;Whitehead, B. D.;Whittington, P.;Widdowson, A. M.;Wiesen, S.;Wilkes, D.;Wilkinson, J.;Williams, M.;Wilson, A. R.;Wilson, D. J.;Wilson, H. R.;Wischmeier, M.;Withenshaw, G.;Witts, D. M.;Wojciech, D.;Wojen´ ski, A.;Wood, D.;Wood, S.;Woodley, C.;Woz´nicka, U.;Wright, J.;Wu, J.;Yao, L.;Yapp, D.;Yavorskij, V.;Yoo, M. G.;Yorkshades, J.;Young, C.;Young, D.;Young, I. D.;Zabolotny, W.;Zacks, J.;Zagorski, R.;Zaitsev, F. S.;Zanino, R.;Zaroschi, V.;Zastrow, K. D.;Zeidner, W.;Zio´ łkowski, A.;Zoita, V.;Zoletnik;I. Zychor, S. Zoletnik;I. Zychor
2016-01-01
Abstract
Efficient, real-time and automated data analysis is one of the key elements for achieving scientific success in complex engineering and physical systems, two examples of which include the JET and ITER tokamaks. One problem which is common to these fields is the determination of the pulsation modes from an irregularly sampled time series. To this end, there are a wealth of signal processing techniques that are being applied to post-pulse and real-time data analysis in such complex systems. Here, we wish to present a review of the applications of a method based on the sparse representation of signals, using examples of the synergies that can be exploited when combining ideas and methods from very different fields, such as astronomy, astrophysics and thermonuclear fusion plasmas. Examples of this work in astronomy and astrophysics are the analysis of pulsation modes in various classes of stars and the orbit determination software of the Pioneer spacecraft. Two examples of this work in thermonuclear fusion plasmas include the detection of magneto-hydrodynamic instabilities, which is now performed routinely in JET in real-time on a sub-millisecond time scale, and the studies leading to the optimization of the magnetic diagnostic system in ITER and TCV. These questions have been solved by formulating them as inverse problems, despite the fact that these applicative frameworks are extremely different from the classical use of sparse representations, from both the theoretical and computational point of view. The requirements, prospects and ideas for the signal processing and real-time data analysis applications of this method to the routine operation of ITER will also be discussed. Finally, a very recent development has been the attempt to apply this method to the deconvolution of the measurement of electric potential performed during a ground-based survey of a proto-Villanovian necropolis in central Italy.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/127026
Citazioni
ND
6
4
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.