Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The empirical Bohmgyro-Bohm (BgB) transport model implemented in the JETTO code is used to predictively simulate the purely Ohmic (OH), L-mode current-ramp-down phase of three JET hybrid pulses, which combine two different ramp rates with two different electron densities (at the beginning of the ramp). The modelling is discussed, namely the strategy to reduce as much as possible the number of free parameters used to benchmark the model predictions against the experimental results. Hence, keeping the gas puffing rate as measured whilst controlling the line-averaged electron density via the recycling coefficient (which in the modelling is taken at the separatrix instead of the wall), one of the many possible ways to fix the total particle source, it is shown that the BgB model reproduces well the experimental data, as far as both average quantities (plasma internal inductance and volume-averaged electron temperature) and profiles (electron density and temperature) are concerned, with relative errors remaining mostly below 20%. The sensitivenesses with respect to the recycling coefficient, the ion effective charge, the energy of neutrals entering the plasma through the separatrix and the need to introduce a particle pinch are assessed; the necessity for a proper sawtooth model if experimental results are to be reproduced is also shown. The strong non-linear coupling in a OH plasma between density, temperature and current (essentially via interplay between the powerbalance equation, Joules heating with a temperature-dependent resistivity and the dependence of BgB transport coefficients on profile gradients) is put in evidence and analyzed in light of modelling results. It is still inferred from the modelling that the real value of the recycling coefficient at the separatrix (basically, the so-called fuelling efficiency times the actual recycling coefficient at the wall) must become close to one in the final stages of the discharges, when the gas puffing is switched off and so recycling comes to be the only source of particles. If the wall recycling remains close to one (as standard for tokamaks), this may indicate that the fuelling efficiency also approaches unity, apparently consistent with the observed fact that the plasma is pushed towards the machine wall at the end of the current ramps.
Modelling the Ohmic L-mode ramp-down phase of JET hybrid pulses using JETTO with Bohm-gyro-Bohm transport
Bizarro, João P. S.;Köchl, Florian;Voitsekhovitch, Irina;Abel, I.;Afanesyev, V.;Aftanas, M.;Agarici, G.;Aggarwal, K. M.;Aho Mantila, L.;Ahonen, E.;Aints, M.;Airila, M.;Akers, R.;Alarcon, T.;Albanese, R.;Alexeev, A.;Alfier, A.;Allan, P.;Almaviva, S.;Alonso, A.;Alper, B.;Altmann, H.;Alves, D.;Ambrosino, G.;Amosov, V.;Andersson, F.;Anderssonsund´en, E.;Andreev, V.;Andrew, Y.;Angelone, M.;Anghel, M.;Anghel, A.;Angioni, C.;Apruzzese, G.;Arcis, N.;Arena, P.;Argouarch, A.;Ariola, M.;Armitano, A.;Armstrong, R.;Arnoux, G.;Arshad, S.;Artaserse, G.;Artaud, J. F.;Ash, A.;Asp, E.;Asunta, O.;Atanasiu, C. V.;Atkins, G.;Avotina, L.;Axton, M. D.;Ayres, C.;Baciero, A.;Bailescu, V.;Baiocchi, B.;Baker, R. A.;Balboa, I.;Balden, M.;Balorin N. Balshaw, C. Balorin N. Balshaw;Banks, J. W.;Baranov, Y. F.;Barbier, D.;Barlow, I. L.;Barnard, M. A.;Barnsley, R.;Barrena, L.;Barrera, L.;Baruzzo, M.;Basiuk, V.;Bateman, G.;Batistoni, P.;Baumgarten, N.;Baylor, L.;Bazylev, B.;Beaumont, P. S.;Beausang, K.;B´ecoulet, M.;Bekris, N.;Beldishevski, M.;Bell, A. C.;Belli, F.;Bellinger, M.;Bellizio, T.;Belo, P. S. A.;Belonohy, E.;Bennett, P. E.;Benterman, N. A.;Berger By, G.;Bergsåker, H.;Berk, H.;Bernardo, J.;Bernert, M.;Bertrand, B.;Beurskens, M. N. A.;Bieg, B.;Bienkowska, B.;Biewer, T. M.;Bigi, M.;B´ılkov´a, P.;Bin, W.;Bird, J.;Bizarro, J.;Bj¨orkas, C.;Blackman, T. R.;Blanchard, P.;Blanco, E.;Blum, J.;Bobkov, V.;Boboc, A.;Boilson, D.;Bolshakova, I.;Bolzonella, T.;Boncagni, L.;Bonheure, G.;Bonnin, X.;Borba, D.;Borthwick, A.;Botrugno, A.;Boulbe, C.;Bouquey, F.;Bourdelle, C.;Bovert, K. V.;Bowden, M.;Boyce, T.;Boyer, H. J.;Bozhenkov, A.;Brade, R. J.;Bradshaw, J. M. A.;Braet, J.;Braic, V.;Braithwaite, G. C.;Brault, C.;Breizman, B.;Bremond, S.;Brennan, P. D.;Brett, A.;Breue, J.;Brezinsek, S.;Bright, M. D. J.;Briscoe, F.;Brix, M.;Brombin, M.;Brown, B. C.;Brown, D. P. D.;Brzozowski, J.;Bucalossi, J.;Buckley, M. A.;Budd, T.;Budny, R. V.;Bunting, P.;Buratti, P.;Burcea, G.;Burckhart, A.;Butcher, P. R.;Buttery, R. J.;Cahyna, P.;Calabr`o, G.;Callaghan, C. P.;Caminade, J. P.;Camp, P. G.;Campling, D. C.;Caniello, R.;Canik, J.;Cannas, B.;Capel, A. J.;Carannante, G.;Card, P. J.;Cardinali, A.;Carlstrom, T.;Carman, P.;Carralero, D.;Carraro, L.;Carter, T.;Carvalho, B. B.;Carvalho, I.;Carvalho, P.;Casati, A.;Castaldo, C.;Caughman, J.;Cavazzana, R.;Cavinato, M.;Cecconello, M.;Cecil, E.;Cecil, F. E.;Cenedese, A.;Centioli, C.;Cesario, R.;Challis, C. D.;Chandler, M.;Chang, C.;Chankin, A.;Chapman, I. T.;Chektybayev, B.;Chernyshova, M.;Child, D. J.;Chiru, P.;Chitarin, G.;Chugonov, I.;Chugunov, I.;Ciric, D.;Clairet, F.;Clarke, R. H.;Clay, R.;Clever, M.;Coad, J. P.;Coates, P. A.;Cocilovo, V.;Coda, S.;Coelho, R.;Coenen, J.;Coffey, I.;Colas, L.;Cole, M.;Collins, S.;Combs, S.;Compan, J.;Conboy, J. E.;Conroy, S.;Cook, N.;Cook, S. P.;Coombs, D.;Cooper, S. R.;Corre, Y.;Corrigan, G.;Cortes, S.;Coster, D.;Counsell, G. F.;Courtois, X.;Cox, M.;Craciunescu, T.;Cramp, S.;Crisanti, F.;Croci, G.;Croft, O.;Crombe, K.;Cromb´e, K.;Crowley, B. J.;Cruz, N.;Cseh, G.;Cupido, L.;Curuia, M.;Cusack, R. A.;Czarnecka, A.;Czarski, T.;Dalley, S.;Daly, E. T.;Dalziel, A.;Daniel, R.;Darrow, D.;David, O.;Davies, N.;Davies, W.;Davis, J. J.;Day, I. E.;Day, C.;De Angelis, R.;de Arcas, G.;Debaar, M. R.;de la Cal, E.;de la Luna, E.;Depablos, J. L.;De Tommasi, G.;de Vries, P. C.;De Angelis, R.;Degli Agostini, F.;Delabie, E.;del Castillo Negrete, D.;Delpech, L.;Denisov, G.;Denyer, A. J.;Denyer, R. F.;Devaux, S.;Devynck, P.;Di Matteo, L.;Di Pace, L.;Dirken, P. J.;Dittmar, T.;Dnestrovskiy, A.;Dodt, D.;Doerner, R.;Doldatov, S.;Dominiczak, K.;Dooley, P.;Dorling, S. E.;Douai, D.;Down, A. P.;Doyle, P. T.;Drake, J. R.;Dreischuh, T.;Drozdov, V.;Dumortier, P.;Dunai, D.;Duran, I.;Durodi´e, F.;Dutta, P.;Dux, R.;Dylst, K.;Eaton, R.;Edlington, T.;Edwards, A. M.;Edwards, D. T.;Edwards, P. K.;Eich, T.;Ekedahl, A.;Elevant, T.;Ellingboe, B.;Elsmore, C. G.;Emmoth, B.;Erdei, G.;Ericsson, G.;Eriksson, L. G.;Eriksson, A.;Esposito, B.;Esser, H. G.;Estrada, T.;Evangelidis, E. A.;Evans, G. E.;Ewart, G. D.;Ewers, D. T.;Falchetto, G.;Falie, D.;Fanthome, J. G. A.;Farthing, J. W.;Fasoli, A.;Faugeras, B.;Fedorczak, N.;Felton, R. C.;Fenzi, C.;Fernades, A.;Fernandes, H.;Ferreira, J. A.;Ferreira, J.;Ferron, J.;Fessey, J. A.;Figini, L.;Figueiredo, J.;Figueiredo, A.;Figueiredo, J.;Finburg, P.;Finken, K. H.;Fischer, U.;Fitzgerald, N.;Flanagan, J.;Fleming, C.;Forbes, A. D.;Ford, O.;Formisano, A.;Fraboulet, D.;Francis, R. J.;Frassinetti, L.;FRESA, RAFFAELE;Friconneau, J. P.;Frigione, D.;Fullard, K.;Fundamenski, W.;Furnopalumbo, M.;G´al, K.;Gao, X.;Garavaglia, S.;Garbet, X.;Garcia, J.;Garcia Munoz, M.;Gardner, W.;Garibaldi, P.;Garnier, D.;Garzotti, L.;Gatu Johnson, M.;Gaudio, P.;Gauthier, E.;Gaze, J. W.;Gear, D. F.;Gedney, J.;Gee, S. J.;Gelfusa, M.;Genangeli, E.;Gerasimov, S.;Geraud, A.;Gerbaud, T.;Gherendi, M.;Ghirelli, N.;Giacalone, J. C.;Giacomelli, L.;Gibson, C. S.;Gil, C.;Gilligan, S. J.;Gimblett, C. G.;Gin, D.;Giovannozzi, E.;Giroud, C.;Giruzzi, G.;Godwin, J.;Goff, J. K.;Gohil, P.;G´ojska, A.;Goloborod’Ko, V.;Gonc¸alves, B.;Goniche, M.;Gonzales, S.;Gonz´alez de Vicente, S. M.;Goodyear, A.;Gorelenkov, N.;Gorini, G.;Goulding, R.;Graham, B.;Graham, D.;Graham, M. E.;Graves, J.;Green, N. R.;Greuner, H.;Grigore, E.;Griph, F. S.;Grisolia, C.;Gros, G.;Groth, M.;Gr¨unhagen, S.;Gryaznevich, M. P.;Guirlet, R.;Gunn, J.;Gupta, A.;Guzdar, P.;Hackett, L. J.;Hacquin, S.;Haist, B.;Hakola, A.;Halitovs, M.;Hall, S. J.;Hallworth Cook, S. P.;Hamilton, D. T.;Han, H.;Handley, R. C.;Harding, S.;Harling, J. D. W.;Harting, D.;Harvey, M. J.;Haupt, T. D. V.;Hawkes, N. C.;Hawryluk, R.;Hay, J. H.;Hayashi, N.;Haydon, P. W.;Hayward, I. R.;Hazel, S.;Heesterman, P. J. L.;Heidbrink, W.;Heinola, K.;Hellesen, C.;Hellsten, T.;Hemming, O. N.;Hender, T. C.;Henderson, M.;Hennion, V.;Hidalgo, C.;Higashijima, S.;Hill, J. W.;Hill, M.;Hill, K.;Hillairet, J.;Hillis, D.;Hirai, T.;Hitchin, M.;Hobirk, J.;Hogan, C.;Hogben, C. H. A.;Hogeweij, G. M. D.;Hollingham, I. C.;Holyaka, R.;Homfray, D. A.;Honeyands, G.;Hong, S. H.;Hong, J. H.;Hor´acek, J.;Horn, B. A.;Horton, A. R.;Horton, L. D.;Hotchin, S. P.;Hough, M. R.;Houlberg, W.;Howell, D. F.;Huber, A.;Huddleston, T. M.;Hudson, Z.;Hughes, M.;Mh¨uhnerbein, M. H¨uhnerbein;Hume, C. C.;Hunt, A. J.;Hunter, C. L.;Hutchinson, T. S.;Huygen, S.;Huysmans, G.;Ide, S.;Illescas, C.;Imbeaux, F.;Ivanova, D.;Ivanova Stanik, I.;Ivings, E.;Jachmich, S.;Jackson, G.;Jacquet, P.;Jakubowska, K.;James, P. V.;Janky, F.;J¨arvinen, A.;Jednorog, S.;Jenkins, I.;Jennison, M. A. C.;Jeskins, C.;Jin Kwon, O.;Joffrin, E.;Johnson, M. F.;Johnson, R.;Johnson, T.;Jolovic, D.;Jonauskas, V.;Jones, E. M.;Jones, G.;Jones, H. D.;Jones, T. T. C.;Jouvet, M.;Jup´en, C.;Kachtchouk, I.;Kaczmarczyk, J.;Kallenbach, A.;K¨allne, J.;Kalupin, D.;K´alvin, S.;Kamelander, G.;Kamendje, R.;Kamiya, K.;Kappatou, A.;Kasparek, W.;Kasprowicz, G.;Katramados, I.;Kaveney, G.;Kaye, A. S.;Kear, M. J.;Keeling, D. L.;Kelliher, D.;Kempenaars, M.;Khilar, P.;Khilkevich, E.;Kidd, N. G.;Kiisk, M.;Kim, K. M.;Kim, H.;King, R. F.;Kinna, D. J.;Kiptily, V.;Kirnev, G.;Kirneva, N.;Kirov, K.;Kirschner, A.;Kisielius, R.;Kislov, D.;Kiss, G.;Kizane, G.;Klein, A.;Klepper, C.;Klimov, N.;Klix, A.;Knaup, M.;Kneuper, K.;Kneupner, H.;Knight, P. J.;Knipe, S. J.;Mkocan, M. Kocan;Rkoch, R. Koch;Fk¨ochl, F. K¨ochl;Gkocsis, G. Kocsis;Skoivuranta, S. Koivuranta;Koppitz, T.;Korotkov, A.;Koskela, T.;Koslowski, H. R.;Kotov, V.;Kovari, M. D.;Kramer, G.;Krasilnikov, A.;Krasilnikov, V.;Kraus, S.;Kreter, A.;Krieger, K.;Kritz, A.;Krivchenkov, Y.;Kruezi, U.;Krylov, S.;Ksiazek, I.;Kuhn, S.;K¨uhnlein, W.;Kukushkin, A.;Kundu, A.;Kurki Suonio, T.;Kurowski, A.;Kuteev, B.;Kuyanov, A.;Kyrytsya, V.;La Haye, R.;Laan, M.;Labate, C.;Lachichi, A.;Laguardia, L.;Lam, N.;Lang, P.;Large, M. T.;Lasa, A.;Lassiwe, I.;Last, J. R.;Lawson, K. D.;Laxåback, M.;Layne, R. A.;Leguern, F.;Leblanc, B.;Lee, S.;Lee, J.;Leggate, H. J.;Lehnen, M.;Leigheb, M.;Lengar, I.;Lennholm, M.;Lerche, E.;Lescure, C. N.;Li, Y.;Li Puma, A.;Liang, Y.;Likonen, J.;Lin, Y.;Lindholm, V.;Linke, J.;Linstead, S. A.;Lipshultz, B.;Litaudon, X.;Litvak, A. G.;Liu, Y.;Loarer, T.;Loarte, A.;Lobel, R. C.;Lomas, P. J.;Long, F. D.;L¨onnroth, J.;Looker, D. J.;Lopez, J.;Lotte, P.;Louche, F.;Loughlin, M. J.;Loving, A. B.;Lowry, C.;Luce, T.;Lucock, R. M. A.;Lukanitsa, A.;Lukin, A.;Lungu, A. M.;Lungu, C. P.;Lyssoivan, A.;Macheta, P.;Mackenzie, A. S.;Macrae, M.;Maddaluno, G.;Maddison, G. P.;Madsen, J.;Magesh, B.;Maget, P.;Maggi, C. F.;Maier, H.;Mailloux, J.;Makkonen, T.;Makowski, M.;Malaquias, A.;Manning, C. J.;Mansfield, M.;Manso, M. E.;Mantica, P.;Marcenko, N.;Marchitti, M. A.;Mardenfeld, M.;Marechal, J. L.;Marinelli, M.;Marinucci, M.;Marocco, D.;Marren, C. A.;Marsen, S.;Martin, D.;Martin, D. L.;Martin, G.;Martin, Y.;Mart´ın Sol´ıs, J. R.;Masaki, K.;Masiello, A.;Maszl, C.;Matejcik, S.;Matilal, A.;Mattei, M.;Matthews, G. F.;Mattoo, S.;Matveev, D.;Maviglia, F.;May, C. R.;Mayer, M.;Mayoral, M. L.;Mazon, D.;Mazzotta, C.;Mazzucato, E.;Mccarthy, P.;Mcclements, K. G.;Mccormick, K.;Mccullen, P. A.;Mccune, D.;Mcdonald, D. C.;Mcgregor, R.;Mckivitt, J. P.;Meakins, A.;Medina, F.;Meigs, A. G.;Menard, M.;Meneses, L.;Menmuir, S.;Merrigan, I. R.;Mertens, P.;Messiaen, A.;M´esz´aros, B.;Meyer, H.;Miano, G.;Michling, R.;Miele, M.;Miettunen, J.;Migliucci, P.;Miller, A. G.;Mills, S. F.;Milnes, J. J.;Min Kim, K.;Mindham, T.;Miorin, E.;Mirizzi, F.;Mirones, E.;Mironov, M.;Mitteau, R.;Mlyn´ar, J.;Mollard, P.;Monakhov, I.;Monier Garbet, P.;Mooney, R.;Moreau, D.;Moreau, P.;Moreira, L.;Morgan, A.;Morgan, P. D.;Morlock, C.;Morris, A. W.;Mort, G. L.;Murakami, M.;Murari, A.;Mustata, I.;Nabais, F.;Nakano, T.;Nardon, E.;Nash, G.;Naulin, V.;Nave, M. F. F.;Nazikian, R.;Nedzelski, I.;Negus, C. R.;Neilson, J. D.;Nemtsev, G.;Neto, A.;Neu, R.;Neubauer, O.;Newbert, G. J.;Newman, M.;Nicholls, K. J.;Nicolai, A.;Nicolas, L.;Nieckchen, P.;Nielsen, A. H.;Nielsen, S. K.;Nielsen, P.;Nielson, G.;Nieto, J.;Nightingale, M. P. S.;Nishijima, D.;Noble, C.;Nocente, M.;Nordman, H.;Norman, M.;Nowak, S.;Nunes, I.;Oberkofler, M.;Odstrcil, M.;O’Gorman, T.;Ohsako, T.;Okabayashi, M.;Olariu, S.;Oleynikov, A.;O’Mullane, M.;Ongena, J.;Orsitto, F.;Oswuigwe, O. I.;Ottaviani, M.;Oyama, N.;Pacella, D.;Paget, K.;Pajuste, E.;Palazzo, S.;Pal´enic, J.;Pamela, J.;Pamela, S.;Pangione, L.;Panin, A.;Panja, S.;Pankin, A.;Pantea, A.;Parail, V.;Paris, P.;Parisot, T.;Park, M.;Parkin, A.;Parsloe, A.;Parsons, B. T.;Pasqualotto, R.;Pastor, P.;Paterson, R.;Paul, M. K.;Peach, D.;Pearce, R. J. H.;Pearson, B. J.;Pearson, I. J.;Pedrick, L. C.;Pedrosa, M. A.;Pegourie, B.;Pereira, R.;Pereslavtsev, P.;Perevezentsev, A.;Thun, C.h. Perezvon;Pericoli Ridolfini, V.;Perona, A.;Perrot, Y.;Peruzzo, S.;Peschanyy, S.;Petravich, G.;Petrizzi, L.;Petrov, V.;Petrzilka, V.;Philipps, V.;Piccolo, F.;Pietropaolo, A.;Pillon, M.;Pinches, S. D.;Pinna, T.;Pintsuk, G.;Piovesan, P.;Pironti, A.;Pisano, F.;Pitts, R.;Plaum, B.;Plyusnin, V.;Polasik, M.;Poli, F. M.;Pomaro, N.;Pompilian, O.;Poncet, L.;Pool, P. J.;Popovichev, S.;Porcelli, F.;Porfiri, M. T.;Portafaix, C.;Pospieszczyk, A.;Possnert, G.;Pozniak, K.;Pradhan, S.;Pragash, R.;Prajapati, V.;Prestopino, G.;Prior, P.;Prokopowicz, R.;Puiatti, M. E.;Purahoo, K.;Pustovitov, V.;P¨utterich, T.;P¨uttmann Kneupner, D.;Quercia, A.;Rachlew, E.;Rademaker, R.;Rafiq, T.;Rainford, M. S. J.;Ramogida, G.;Rapp, J.;Rasmussen, J. J.;Rathod, K.;Ratt´a, G.;Gravera, G. Ravera;Refy, D.;Reichle, R.;Reinelt, M.;Reiser, D.;Reiss, R.;Reiter, D.;Rendell, D.;Reux, C.;Rewoldt, G.;Ribeiro, T. T.;Riccardo, V.;Richards, D.;Rigollet, F.;Rimini, F. G.;Rios, L.;Riva, M.;Roberts, J. E. C.;Robins, R. J.;Robinson, D. S.;Robinson, S. A.;Robson, D. W.;Roche, H.;R¨odig, M.;Rodionov, N.;Rohde, V.;Rolfe, A.;Romanelli, M.;Romanelli, F.;Romano, A.;Romero, J.;Ronchi, E.;Rosanvallon, S.;Roux, C.h.;Rowe, S.;Rubel, M.;Rubinacci, G.;Ruiz, M.;Ruset, C.;Russell, M.;Ruth, A.;Ryc, L.;Rydzy, A.;Rzadkiewicz, J.;Saarelma, S.;Sabathier, F.;Sabot, R.;Sadakov, S.;Sadvakassova, A.;Sadykov, A.;Sagar, P.;Saibene, G.;Saille, A.;Saint Laurent, F.;Salewski, M.;Salmi, A.;Salzedas, F.;Samm, U.;Sanchez, P.;Sanders, S.;Sanders, S. G.;Sandford, G.;Sandland, K.;Sandquist, P.;Sands, D. E. G.;Santala, M. I. K.;Santra, P.;Sartori, F.;Sartori, R.;Sauter, O.;Savelyev, A.;Savtchkov, A.;Scales, S. C.;Scarabosio, A.;Schaefer, N.;Schmidt, V.;Schmidt, A.;Schmitz, O.;Schmuck, S.;Schneider, M.;Scholz, M.;Sch¨opf, K.;Schweer, B.;Schweinzer, J.;Seki, M.;Semeraro, L.;Semerok, A.;Sergienko, G.;Sertoli, M.;Shannon, M. M. J.;Sharapov, S. E.;Shaw, S. R.;Shevelev, A.;Sieglin, B.;Sievering, R.;Silva, C. A.;Simmons, P. A.;Simonetto, A.;Simpson, D.;Sipil¨a, S. K.;Sips, A. C. C.;Sir´en, P.;Sirinelli, A.;Sj¨ostrand, H.;Skopintsev, D.;Slabkowska, K.;Smith, P. G.;Snipes, J.;Snoj, L.;Snyder, S.;Soare, S.;Solano, E. R.;Soleto, A.;Solomon, W.;Soltane, C.;Sonato, P.;Sopplesa, A.;Sorrentino, A.;Sousa, J.;Sowden, C. B. C.;Sozzi, C.;Sp¨ah, P.;Spelzini, T.;Spence, J.;Spineanu, F.;Spuig, P.;Stagg, R. D.;Stamp, M. F.;Stancalie, V.;Stangeby, P.;Stankiewicz, R.;Stan Sion, C.;Starkey, D. E.;Stead, M. J.;Stejner, M.;Stephen, A. V.;Stephen, M.;Stevens, A. L.;Stokes, R. B.;Stork, D.;Stoyanov, D.;Strachan, J.;Strand, P.;Stransky, M.;Strauss, D.;Strintzi, D.;Studholme, W.;Su Na, Y.;Subba, F.;Summers, H. P.;Sun, Y.;Surdu Bob, C.;Surrey, E.;Sutton, D. J.;Svensson, J.;Swain, D.;Syme, B. D.;Symonds, I. D.;Szabolics, T.;Szepesi, T.;Szydlowski, A.;Tabares, F.;Takalo, V.;Takenaga, H.;Tala, T.;Talbot, A. R.;Taliercio, C.;Tame, C.;Tardocchi, M.;Taroni, L.;Telesca, G.;Terra, A.;Terrington, A. O.;Testa, D.;Theis, J. M.;Thomas, J. D.;Thomas, P. D.;Thomas, P. R.;Thompson, V. K.;Thomser, C.;Athyagaraja, A. Thyagaraja;Patigwell, P. A. Tigwell;Tiseanu, I.;Tivey, R.;Todd, J. M.;Todd, T. N.;Mztokar, M. Z. Tokar;Stosti, S. Tosti;Ptrabuc, P. Trabuc;Jmtravere, J. M. Travere;Ptrimble, P. Trimble;Trkov, A.;Trukhina, E.;Tsalas, M.;Tsitrone, E.;Tskhakaya jun, D.;Tudisco, O.;Tugarinov, S.;Turner, M. M.;Tyrrell, S. G. J.;Umeda, N.;Unterberg, B.;Urano, H.;Urquhart, A. J.;Uytdenhouwen, I.;Vaccaro, A.;Vadgama, A. P.;Vagliasindi, G.;Valcarcel, D.;Valisa, M.;Vallory, J.;Valovic, M.;Van Eester, D.;Vanmilligen, B.;van Rooij, G. J.;Varandas, C. A. F.;Vartanian, S.;Vasava, K.;Vdovin, V.;Vega, J.;Verdoolaege, G.;Verger, J. M.;Vermare, L.;Verona, C.;Versloot, T.;Vervier, M.;Vicente, J.;Villari, S.;Villedieu, E.;Villone, F.;Vince, J. E.;Vine, G. J.;Vinyar, I.;Viola, B.;Vitale, E.;Vitelli, R.;Vitins, A.;Vlad, M.;Ivoitsekhovitch, I. Voitsekhovitch;Vrancken, M.;Kvulliez, K. Vulliez;Cwfwaldon, C. W. F. Waldon;Walker, M.;Walsh, M. J.;Waterhouse, J.;Watkins, M. L.;Watson, M. J.;Wauters, T.;Way, M. W.;Webb, C. R.;Jweiland, J. Weiland;Hweisen, H. Weisen;Mweiszflog, M. Weiszflog;Rwenninger, R. Wenninger;West, A. T.;Weulersse, J. M.;Wheatley, M. R.;Whiteford, A. D.;Whitehead, A. M.;Whitehurst, A. G.;Amwiddowson, A. M. Widdowson;Cwiegmann, C. Wiegmann;Swiesen, S. Wiesen;Awilson, A. Wilson;Wilson, D.;Wilson, D. J.;Wilson, H. R.;Wischmeier, M.;Witts, D. M.;Wolf, R. C.;Wolowski, J.;Woscov, P.;Wright, J.;Xu, G. S.;Yavorskij, V.;Yerashok, V.;Yoo, M.;Yorkshades, J.;Young, C.;Young, D.;Young, I. D.;Yuhong, X.;Yun, S.;Zabeo, L.;Zabolotny, W.;Zaccarian, L.;Zagorski, R.;Zaitsev, F. S.;Zakharov, L.;Zanino, R.;Zaroschi, V.;Zastrow, K. D.;Zatz, I.;Zefran, B.;Zeidner, W.;Zerbini, M.;Zhang, T.;Zhitlukin, A.;Zhu, Y.;Zimmermann, O.;Zoita, V.;Zoletnik;W. Zwingman, S. Zoletnik;W. Zwingman
2016-01-01
Abstract
The empirical Bohmgyro-Bohm (BgB) transport model implemented in the JETTO code is used to predictively simulate the purely Ohmic (OH), L-mode current-ramp-down phase of three JET hybrid pulses, which combine two different ramp rates with two different electron densities (at the beginning of the ramp). The modelling is discussed, namely the strategy to reduce as much as possible the number of free parameters used to benchmark the model predictions against the experimental results. Hence, keeping the gas puffing rate as measured whilst controlling the line-averaged electron density via the recycling coefficient (which in the modelling is taken at the separatrix instead of the wall), one of the many possible ways to fix the total particle source, it is shown that the BgB model reproduces well the experimental data, as far as both average quantities (plasma internal inductance and volume-averaged electron temperature) and profiles (electron density and temperature) are concerned, with relative errors remaining mostly below 20%. The sensitivenesses with respect to the recycling coefficient, the ion effective charge, the energy of neutrals entering the plasma through the separatrix and the need to introduce a particle pinch are assessed; the necessity for a proper sawtooth model if experimental results are to be reproduced is also shown. The strong non-linear coupling in a OH plasma between density, temperature and current (essentially via interplay between the powerbalance equation, Joules heating with a temperature-dependent resistivity and the dependence of BgB transport coefficients on profile gradients) is put in evidence and analyzed in light of modelling results. It is still inferred from the modelling that the real value of the recycling coefficient at the separatrix (basically, the so-called fuelling efficiency times the actual recycling coefficient at the wall) must become close to one in the final stages of the discharges, when the gas puffing is switched off and so recycling comes to be the only source of particles. If the wall recycling remains close to one (as standard for tokamaks), this may indicate that the fuelling efficiency also approaches unity, apparently consistent with the observed fact that the plasma is pushed towards the machine wall at the end of the current ramps.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/126720
Citazioni
ND
7
7
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.