We study the pseudo-Einstein equation $R_{1 \bar{1}} = 0$ on the Heisenberg group $\mathbb{H}_1 = \mathbb{C} \times \mathbb{R}$. We consider first order perturbations $\theta_\epsilon = \theta_0 + \epsilon \theta$ and linearize the pseudo-Einstein equation about $\theta_0$ (the canonical Tanaka–Webster flat contact form on $\mathbb{H}_1$ thought of as a strictly pseudoconvex CR manifold). If $\theta = e^{2u} \theta_0$ the linearized pseudo-Einstein equation is $\Delta_b u − 4 |Lu|^2 = 0$ where $\Delta_b$ is the sublaplacian of $(\mathbb{H}_1, \theta_0)$ and L is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain $\Omega \subset \mathbb{H}_1$ by applying subelliptic theory i.e. existence and regularity results for weak sub elliptic harmonic maps. We determine a solution $u$ to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that $u(x) \to − \infty$ as $|x| \to +\infty$.

Linearized pseudo-Einstein equations on the Heisenberg group

BARLETTA, Elisabetta;DRAGOMIR, Sorin;
2016-01-01

Abstract

We study the pseudo-Einstein equation $R_{1 \bar{1}} = 0$ on the Heisenberg group $\mathbb{H}_1 = \mathbb{C} \times \mathbb{R}$. We consider first order perturbations $\theta_\epsilon = \theta_0 + \epsilon \theta$ and linearize the pseudo-Einstein equation about $\theta_0$ (the canonical Tanaka–Webster flat contact form on $\mathbb{H}_1$ thought of as a strictly pseudoconvex CR manifold). If $\theta = e^{2u} \theta_0$ the linearized pseudo-Einstein equation is $\Delta_b u − 4 |Lu|^2 = 0$ where $\Delta_b$ is the sublaplacian of $(\mathbb{H}_1, \theta_0)$ and L is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain $\Omega \subset \mathbb{H}_1$ by applying subelliptic theory i.e. existence and regularity results for weak sub elliptic harmonic maps. We determine a solution $u$ to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that $u(x) \to − \infty$ as $|x| \to +\infty$.
2016
File in questo prodotto:
File Dimensione Formato  
Heisenberg_Einstein.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 362.97 kB
Formato Adobe PDF
362.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/124833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact