Numerical methods are widespread in forming applications since a deeper understanding and a finer calibration of the process can be reached without most of the assumptions used in analytical approaches. In this calibration procedure the characterization of the material behaviour is an important preliminary step that cannot be avoided. Experimental tests can be numerically modelled and material constants can be found by inverse methods making numerical results as close as possible to experimental ones. In this work material parameters of a superplastic aluminium alloy have been found by experimental forming tests and an inverse analysis. Constant pressure free inflation tests were firstly performed to find the optimal range for temperature and strain rate values. Material constants were then calculated, on the basis of these tests, minimizing errors between experimental and numerical data through a gradient based optimization iterative procedure. Constant strain rate experimental tests were finally used to refine material parameters and to gain a better agreement between experiments and numerical simulations.

Characterization of a superplastic aluminium alloy ALNOVI-U through free inflation tests and inverse analysis

SORGENTE, DONATO;
2014-01-01

Abstract

Numerical methods are widespread in forming applications since a deeper understanding and a finer calibration of the process can be reached without most of the assumptions used in analytical approaches. In this calibration procedure the characterization of the material behaviour is an important preliminary step that cannot be avoided. Experimental tests can be numerically modelled and material constants can be found by inverse methods making numerical results as close as possible to experimental ones. In this work material parameters of a superplastic aluminium alloy have been found by experimental forming tests and an inverse analysis. Constant pressure free inflation tests were firstly performed to find the optimal range for temperature and strain rate values. Material constants were then calculated, on the basis of these tests, minimizing errors between experimental and numerical data through a gradient based optimization iterative procedure. Constant strain rate experimental tests were finally used to refine material parameters and to gain a better agreement between experiments and numerical simulations.
2014
File in questo prodotto:
File Dimensione Formato  
2014_Characterization of a superplastic aluminium alloy ALNOVI-U through free inflation tests and inverse analysis.pdf

non disponibili

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 800.62 kB
Formato Adobe PDF
800.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/124231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 23
social impact