We investigate the Dirichlet problem related to linear elliptic second-order partial differential operators with smooth coefficients in divergence form in bounded connected domains of R^ ( ≥ 3) with Lyapunov boundary. In particular, we show how to represent the solution in terms of a simple layer potential. We use an indirect boundary integral method hinging on the theory of reducible operators and the theory of differential forms.

The Dirichlet Problem for Second-Order Divergence Form Elliptic Operators with Variable Coefficients: The Simple Layer Potential Ansatz

CIALDEA, Alberto;LEONESSA, VITA;MALASPINA, Angelica
2015-01-01

Abstract

We investigate the Dirichlet problem related to linear elliptic second-order partial differential operators with smooth coefficients in divergence form in bounded connected domains of R^ ( ≥ 3) with Lyapunov boundary. In particular, we show how to represent the solution in terms of a simple layer potential. We use an indirect boundary integral method hinging on the theory of reducible operators and the theory of differential forms.
2015
File in questo prodotto:
File Dimensione Formato  
Abstract and applied math.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/114974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact