Abstract. In this paper, we present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour (IWV) from a collocated microwave radiometer during the intense observation campaign HOPE in the frame of the HD(CP)2 initiative. The simultaneous observation of a microwave radiometer and a Raman lidar allowed an operational and continuous measurement of water vapour profiles also during cloudy conditions. The calibration method provides results which are in a good agreement with conventional methods based on radiosondes. The calibration factor derived from the proposed IWV method is very stable with a relative uncertainty of 5 %. This stability allows for the calibration of the lidar even in the presence of clouds using the calibration factor determined during the most recent clear sky interval. Based on the application of this approach, it is possible to retrieve water vapour profiles during all non-precipitating conditions. A statistical analysis shows a good agreement between the lidar measurements and collocated radiosondes. The relative biases amount to less than 6.7 % below 2 km.
Water vapour profiles from raman lidar automatically calibrated by microwave radiometer data during hope
DI GIROLAMO, Paolo;
2015-01-01
Abstract
Abstract. In this paper, we present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour (IWV) from a collocated microwave radiometer during the intense observation campaign HOPE in the frame of the HD(CP)2 initiative. The simultaneous observation of a microwave radiometer and a Raman lidar allowed an operational and continuous measurement of water vapour profiles also during cloudy conditions. The calibration method provides results which are in a good agreement with conventional methods based on radiosondes. The calibration factor derived from the proposed IWV method is very stable with a relative uncertainty of 5 %. This stability allows for the calibration of the lidar even in the presence of clouds using the calibration factor determined during the most recent clear sky interval. Based on the application of this approach, it is possible to retrieve water vapour profiles during all non-precipitating conditions. A statistical analysis shows a good agreement between the lidar measurements and collocated radiosondes. The relative biases amount to less than 6.7 % below 2 km.File | Dimensione | Formato | |
---|---|---|---|
acp-15-7753-2015.pdf
accesso aperto
Descrizione: Articolo definitivo
Tipologia:
Pdf editoriale
Licenza:
Creative commons
Dimensione
863.88 kB
Formato
Adobe PDF
|
863.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.