The absolute configuration (AC) of the plant phytotoxin inuloxin A, produced by Inula viscosa, and of the fungal phytotoxin seiricardine A, obtained from Seiridium fungi, pathogen for cypress, has been determined by experimental measurements and theoretical simulations of chiroptical properties of three related methods, namely, Optical Rotatory Dispersion (ORD), Electronic Circular Dichroism (ECD), and Vibrational Circular Dichroism (VCD). Computational prediction by Density Functional Theory (DFT) of VCD spectra and by Time-dependent DFT (TDDFT) of ORD and ECD spectra allowed to assign (7R,8R,10S) AC to naturally occurring (+)-inuloxin A. In the case of compound (-)-seiricardine A, which lacks useful for the analysis UV-Vis absorption, and thus provides a hardly detectable ECD spectrum and quite low ORD values, an introduction of a suitable chromophore by chemical derivatization was performed. The corresponding derivative, 2-O-p-bromobenzoate ester, gave rise to an intense ECD spectrum and higher ORD and VCD values. The comparison of computed spectra with the experimental ones allowed to assign (1S,2R,3aS,4S,5R,7aS) AC to (-)-2-O-p-bromobenzoate ester of seiricardine A and then to (-)-seiricardine A. This study further supports a recent trend of concerted application of more than a single chiroptical technique toward an unambiguous assignment of AC of flexible and complex natural products. Moreover, the use of chemical derivatization, with insertion of suitable chromophoric moieties has allowed to treat also UV-Vis transparent molecules by ECD and ORD spectroscopies.

Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies

SANTORO, ERNESTO;SUPERCHI, Stefano
2015-01-01

Abstract

The absolute configuration (AC) of the plant phytotoxin inuloxin A, produced by Inula viscosa, and of the fungal phytotoxin seiricardine A, obtained from Seiridium fungi, pathogen for cypress, has been determined by experimental measurements and theoretical simulations of chiroptical properties of three related methods, namely, Optical Rotatory Dispersion (ORD), Electronic Circular Dichroism (ECD), and Vibrational Circular Dichroism (VCD). Computational prediction by Density Functional Theory (DFT) of VCD spectra and by Time-dependent DFT (TDDFT) of ORD and ECD spectra allowed to assign (7R,8R,10S) AC to naturally occurring (+)-inuloxin A. In the case of compound (-)-seiricardine A, which lacks useful for the analysis UV-Vis absorption, and thus provides a hardly detectable ECD spectrum and quite low ORD values, an introduction of a suitable chromophore by chemical derivatization was performed. The corresponding derivative, 2-O-p-bromobenzoate ester, gave rise to an intense ECD spectrum and higher ORD and VCD values. The comparison of computed spectra with the experimental ones allowed to assign (1S,2R,3aS,4S,5R,7aS) AC to (-)-2-O-p-bromobenzoate ester of seiricardine A and then to (-)-seiricardine A. This study further supports a recent trend of concerted application of more than a single chiroptical technique toward an unambiguous assignment of AC of flexible and complex natural products. Moreover, the use of chemical derivatization, with insertion of suitable chromophoric moieties has allowed to treat also UV-Vis transparent molecules by ECD and ORD spectroscopies.
2015
File in questo prodotto:
File Dimensione Formato  
Phytochemistry_2015_359.pdf

solo utenti autorizzati

Descrizione: pdf finale
Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/112569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 33
social impact