A subgroup H of a group G is called inert if, for each g in G, the index of H intersection H^g in H is finite. We give a classication of soluble-by-finite groups G in which subnormal subgroups are inert in the cases where G has no nontrivial torsion normal subgroups or G is finitely generated.
On soluble groups whose subnormal subgroups are inert
RINAURO, Silvana
2015-01-01
Abstract
A subgroup H of a group G is called inert if, for each g in G, the index of H intersection H^g in H is finite. We give a classication of soluble-by-finite groups G in which subnormal subgroups are inert in the cases where G has no nontrivial torsion normal subgroups or G is finitely generated.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
T_tilde_pubblicato_IJGT.pdf
accesso aperto
Tipologia:
Pdf editoriale
Licenza:
DRM non definito
Dimensione
194.79 kB
Formato
Adobe PDF
|
194.79 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.