Kinetic studies on the stability of two non-steroids anti-inflammatory drugs (NSAIDs), ibuprofen and mefenamic acid, in pure water and activated sludge indicated that both pharmaceuticals were resistant to degradation for one month. The efficiency of sequential advanced membrane technology wastewater treatment plant towards removal of both drugs from wastewater was investigated. The sequential system included activated sludge, ultrafiltration (hollow fiber membranes with 100 kDa cutoff, and spiral wound membranes with 20 kDa cutoff), activated carbon column and reverse osmosis (RO). The overall performance of the integrated plant demonstrated complete removal of ibuprofen and mefenamic acid from spiked wastewater samples. Activated carbon column was the most effective component in removing these NSAIDs with a removal efficiency of 98.8% for both ibuprofen and mefenamic acid. Batch adsorption of both NSAIDs by activated charcoal and a composite micelle (octadecyltrimethylammonium (ODTMA)–clay (montmorillonite) was determined at 25 ˚C. The results revealed that both adsorptions fit Langmuir isotherm with Qmax of 66.7 mg/g and 62.5 mg/g for ibuprofen using activated carbon and clay-micelle complex, respectively, and with Qmax of 90.9 mg/g and 100.0 mg/g for mefenamic acid using activated charcoal and claymicelle complex, respectively. These results suggest that an integration of ODTMA-clay-micelle complex column in wastewater treatment plant is highly promising and can lead to an improvement of the removal efficiency of these drugs from wastewater.

Efficiency of Membrane Technology Activated Charcoal and a Clay Micelle Complex for the Removal of Ibuprofen and Mefenamic Acid.

SCRANO, Laura;BUFO, Sabino Aurelio;
2015-01-01

Abstract

Kinetic studies on the stability of two non-steroids anti-inflammatory drugs (NSAIDs), ibuprofen and mefenamic acid, in pure water and activated sludge indicated that both pharmaceuticals were resistant to degradation for one month. The efficiency of sequential advanced membrane technology wastewater treatment plant towards removal of both drugs from wastewater was investigated. The sequential system included activated sludge, ultrafiltration (hollow fiber membranes with 100 kDa cutoff, and spiral wound membranes with 20 kDa cutoff), activated carbon column and reverse osmosis (RO). The overall performance of the integrated plant demonstrated complete removal of ibuprofen and mefenamic acid from spiked wastewater samples. Activated carbon column was the most effective component in removing these NSAIDs with a removal efficiency of 98.8% for both ibuprofen and mefenamic acid. Batch adsorption of both NSAIDs by activated charcoal and a composite micelle (octadecyltrimethylammonium (ODTMA)–clay (montmorillonite) was determined at 25 ˚C. The results revealed that both adsorptions fit Langmuir isotherm with Qmax of 66.7 mg/g and 62.5 mg/g for ibuprofen using activated carbon and clay-micelle complex, respectively, and with Qmax of 90.9 mg/g and 100.0 mg/g for mefenamic acid using activated charcoal and claymicelle complex, respectively. These results suggest that an integration of ODTMA-clay-micelle complex column in wastewater treatment plant is highly promising and can lead to an improvement of the removal efficiency of these drugs from wastewater.
2015
File in questo prodotto:
File Dimensione Formato  
Volume 4 Issue 5 Paper 3 (Int. J. Case Studies).pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/111437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact