Here we investigate the properties of amorphous TiH2/carbon nanocomposites as possible active material in lithium cells. Several TiH2/C mixtures are prepared by a mechanochemical route, by varying the carbon/hydride ratio. Materials are tested in electrochemical cells versus lithium metal in EC:DMC LiPF6 electrolyte by galvanostatic cycling (GC) and are characterized by X-ray diffraction, transmission electron microscopy, thermogravimetry and mass spectrometry. Thermal dehydrogenation processes are altered by the mechanochemical treatment of the sample: milling decreases the hydrogen content of the hydride. On the other hand, the mechanochemical grinding increases the specific capacity delivered during the first GC discharge.

H2 thermal desorption and hydride conversion reactions in Li cells of TiH2/C amorphous nanocomposites.

BRUTTI, SERGIO;
2015-01-01

Abstract

Here we investigate the properties of amorphous TiH2/carbon nanocomposites as possible active material in lithium cells. Several TiH2/C mixtures are prepared by a mechanochemical route, by varying the carbon/hydride ratio. Materials are tested in electrochemical cells versus lithium metal in EC:DMC LiPF6 electrolyte by galvanostatic cycling (GC) and are characterized by X-ray diffraction, transmission electron microscopy, thermogravimetry and mass spectrometry. Thermal dehydrogenation processes are altered by the mechanochemical treatment of the sample: milling decreases the hydrogen content of the hydride. On the other hand, the mechanochemical grinding increases the specific capacity delivered during the first GC discharge.
2015
File in questo prodotto:
File Dimensione Formato  
JALCOM_TiH2_2015.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/108696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact