A time-dependent Density Functional Theory (TDDFT) computational simulation of the electronic circular dichroism (ECD) spectrum of the phytotoxin scytalone (1), produced by different plant pathogenic fungi and involved in melanin production, was undertaken with the aim to establish a nonempirical correlation between the spectrum and the absolute configuration of this compound. In fact, very low optical rotation data of 1 do not afford a reliable absolute configuration assignment while, on the contrary, the use of ECD can provide a useful tool for its stereochemical description. This structurally simple molecule displayed a considerable molecular flexibility, which made it mandatory to obtain an accurate conformers distribution to get a good reproduction of the experimental ECD spectrum. Only the application of an implicit integral equation formalism Polarizable Continuum Model (IEF-PCM) solvation model in the calculations allowed us to properly describe the conformer populations and finally obtain a more than satisfactory spectral simulation
Computational ECD Spectrum Simulation of the Phytotoxin Scytalone: Importance of Solvent Effects on Conformer Populations
MAZZEO, GIUSEPPE;SUPERCHI, Stefano
2014-01-01
Abstract
A time-dependent Density Functional Theory (TDDFT) computational simulation of the electronic circular dichroism (ECD) spectrum of the phytotoxin scytalone (1), produced by different plant pathogenic fungi and involved in melanin production, was undertaken with the aim to establish a nonempirical correlation between the spectrum and the absolute configuration of this compound. In fact, very low optical rotation data of 1 do not afford a reliable absolute configuration assignment while, on the contrary, the use of ECD can provide a useful tool for its stereochemical description. This structurally simple molecule displayed a considerable molecular flexibility, which made it mandatory to obtain an accurate conformers distribution to get a good reproduction of the experimental ECD spectrum. Only the application of an implicit integral equation formalism Polarizable Continuum Model (IEF-PCM) solvation model in the calculations allowed us to properly describe the conformer populations and finally obtain a more than satisfactory spectral simulationFile | Dimensione | Formato | |
---|---|---|---|
Chirality_2014_502.pdf
solo utenti autorizzati
Descrizione: pdf finale
Tipologia:
Pdf editoriale
Licenza:
DRM non definito
Dimensione
890.05 kB
Formato
Adobe PDF
|
890.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.