Defect prediction approaches use software metrics and fault data to learn which software properties associate with faults in classes. Existing techniques predict fault-prone classes in the same release (intra) or in a subsequent releases (inter) of a subject software system. We propose an intra-release fault prediction technique, which learns from clusters of related classes, rather than from the entire system. Classes are clustered using structural information and fault prediction models are built using the properties of the classes in each cluster. We present an empirical investigation on data from 29 releases of eight open source software systems from the PROMISE repository, with predictors built using multivariate linear regression. The results indicate that the prediction models built on clusters outperform those built on all the classes of the system.
Class Level Fault Prediction Using Software Clustering
SCANNIELLO, GIUSEPPE;
2013-01-01
Abstract
Defect prediction approaches use software metrics and fault data to learn which software properties associate with faults in classes. Existing techniques predict fault-prone classes in the same release (intra) or in a subsequent releases (inter) of a subject software system. We propose an intra-release fault prediction technique, which learns from clusters of related classes, rather than from the entire system. Classes are clustered using structural information and fault prediction models are built using the properties of the classes in each cluster. We present an empirical investigation on data from 29 releases of eight open source software systems from the PROMISE repository, with predictors built using multivariate linear regression. The results indicate that the prediction models built on clusters outperform those built on all the classes of the system.File | Dimensione | Formato | |
---|---|---|---|
ase13newideas-p147-p-19529-27718fa--preprint.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
232.84 kB
Formato
Adobe PDF
|
232.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.