An endomorphisms $\varphi$ of a group $G$ is said inertial if $\forall H\le G$ \ \ $|\varphi(H):(H\cap \varphi(H))|<\infty$. Here we study the ring of inertial endomorphisms of an abelian torsion group and the group of its units. Also the case of vector spaces is considered.
On the ring of inertial endomorphisms of an abelian p-group
RINAURO, Silvana
2012-01-01
Abstract
An endomorphisms $\varphi$ of a group $G$ is said inertial if $\forall H\le G$ \ \ $|\varphi(H):(H\cap \varphi(H))|<\infty$. Here we study the ring of inertial endomorphisms of an abelian torsion group and the group of its units. Also the case of vector spaces is considered.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PREPRINT_IEnd_torsione_nov16PD.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
245.83 kB
Formato
Adobe PDF
|
245.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.