This paper describes the capabilities of a new in-house code, named SPREAD 2.0, to provide real time guidance to select the optimal parameters for preliminary design of hypersonic propulsion systems. Such a new solver drastically reduces the time and costs associated with excessive use of Computational Fluid Dynamics (CFD) and/or experimental tests. The accuracy of the model has been assessed by comparing the results with a 2-D CFD simulation performed with the C3NS-CIRA code. Finally, SPREAD 2.0 has been used to address the influence of air/fuel equivalence ratios and of craft angles of attack on the thermodynamic variables, which in turn affect the design, and on the pollutant emissions.

Preliminary Design of a Hypersonic Air-breathing Vehicle

BONELLI, FRANCESCO;VIGGIANO, ANNARITA;MAGI, Vinicio
2011-01-01

Abstract

This paper describes the capabilities of a new in-house code, named SPREAD 2.0, to provide real time guidance to select the optimal parameters for preliminary design of hypersonic propulsion systems. Such a new solver drastically reduces the time and costs associated with excessive use of Computational Fluid Dynamics (CFD) and/or experimental tests. The accuracy of the model has been assessed by comparing the results with a 2-D CFD simulation performed with the C3NS-CIRA code. Finally, SPREAD 2.0 has been used to address the influence of air/fuel equivalence ratios and of craft angles of attack on the thermodynamic variables, which in turn affect the design, and on the pollutant emissions.
2011
9781617829734
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/22181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact