Motivated by a typical and well-known problem of neurobiological modeling, a parallel algorithm devised to simulate sample paths of stationary normal processes with rational spectral densities is implemented to evaluate first passage time probability densities for time-varying boundaries. After a self-contained outline of the original problem and of the involved computational framework, the results of numerous simulations are discussed and conclusions are drawn on the effect of a periodic boundary and a Butterworth-type covariance on determining quantitative and qualitative features of first passage time probability densities.
Simulation of Gaussian Processes and First Passage Time Densities Evaluation
DI NARDO, Elvira;
2000-01-01
Abstract
Motivated by a typical and well-known problem of neurobiological modeling, a parallel algorithm devised to simulate sample paths of stationary normal processes with rational spectral densities is implemented to evaluate first passage time probability densities for time-varying boundaries. After a self-contained outline of the original problem and of the involved computational framework, the results of numerous simulations are discussed and conclusions are drawn on the effect of a periodic boundary and a Butterworth-type covariance on determining quantitative and qualitative features of first passage time probability densities.File | Dimensione | Formato | |
---|---|---|---|
fulltext-1.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
267.72 kB
Formato
Adobe PDF
|
267.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.