We study pseudoharmonic maps with potential $V$, i.e. smooth maps $\phi: M \to N$ of a compact strictly psudoconvex CR manifold $M$ into a Riemannian manifold $N$ which are critical points of the functional $E_V(\phi)= \frac{1}{2} \int_M \{ \mathrm{trace}_\theta (\pi_H \phi^* h) - 2 V\circ \phi\} \theta \wedge (d \theta)^n$. We derive the first and second variation formula for $E_V$. We show that any pseudoharmonic map with a concave $C^2$ potential into a Riemannian manifold of nonpositive curvature is stable. Also, any nonconstant pseudoharmonic map $\phi : M \to S^\nu$ with a strictly convex $C^2$ potential is shown to be unstable.

Pseudoharmonic maps with potential

BARLETTA, Elisabetta;DRAGOMIR, Sorin
2004-01-01

Abstract

We study pseudoharmonic maps with potential $V$, i.e. smooth maps $\phi: M \to N$ of a compact strictly psudoconvex CR manifold $M$ into a Riemannian manifold $N$ which are critical points of the functional $E_V(\phi)= \frac{1}{2} \int_M \{ \mathrm{trace}_\theta (\pi_H \phi^* h) - 2 V\circ \phi\} \theta \wedge (d \theta)^n$. We derive the first and second variation formula for $E_V$. We show that any pseudoharmonic map with a concave $C^2$ potential into a Riemannian manifold of nonpositive curvature is stable. Also, any nonconstant pseudoharmonic map $\phi : M \to S^\nu$ with a strictly convex $C^2$ potential is shown to be unstable.
File in questo prodotto:
File Dimensione Formato  
Pseudoharmonic maps with potential.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 241.1 kB
Formato Adobe PDF
241.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/17151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact