Extending the rigorous presentation of the classical umbral calculus given by Rota and Taylor in 1994, the so-called partition polynomials are interpreted with the aim to point out the umbral nature of the Poisson random variables. Among the new umbrae introduced, the main tool is the partition umbra that leads also to a simple expression of the functional composition of the exponential power series. Moreover a new short proof of the Lagrange inversion formula is given.

Umbral nature of the Poisson random variables

DI NARDO, Elvira;SENATO PULLANO, Domenico
2001

Abstract

Extending the rigorous presentation of the classical umbral calculus given by Rota and Taylor in 1994, the so-called partition polynomials are interpreted with the aim to point out the umbral nature of the Poisson random variables. Among the new umbrae introduced, the main tool is the partition umbra that leads also to a simple expression of the functional composition of the exponential power series. Moreover a new short proof of the Lagrange inversion formula is given.
File in questo prodotto:
File Dimensione Formato  
0412054v1.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 249.71 kB
Formato Adobe PDF
249.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/16072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact