We consider a stochastic neuronal model in which the time evolution of the membrane potential is described by a Wiener process perturbed by random jumps driven by a counting process. We consider the first-crossing-time problem through a constant boundary for such a process, in order to describe the firing activity of the model neuron. We build up a new simulation procedure for the construction of firing densities estimates.

Evaluation of Neuronal Firing Densities via Simulation of a Jump-Diffusion Process

DI NARDO, Elvira;
2005-01-01

Abstract

We consider a stochastic neuronal model in which the time evolution of the membrane potential is described by a Wiener process perturbed by random jumps driven by a counting process. We consider the first-crossing-time problem through a constant boundary for such a process, in order to describe the firing activity of the model neuron. We build up a new simulation procedure for the construction of firing densities estimates.
2005
9783540262985
File in questo prodotto:
File Dimensione Formato  
PaperIWINAC2005[1].pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 211.33 kB
Formato Adobe PDF
211.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/1606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact