Crude oil in the environment is exposed to a series of weather-climatic factors (water, oxygen, solar irradiation) and microorganisms’ action that triggers chemical-physical processes of degradation (known as weathering). In a short time, the original composition of exposed oil can change significantly. In this work, our research team experimented with an Italian crude oil simulating solar irradiation to understand the modifications induced on its composition by artificial aging. Moreover, we studied the transformations deriving from different advanced oxidation processes (AOP) applied as remediation methods on liquid matrices contaminated by petroleum. For the last objective, we adopted different AOPs (photocatalysis, sonolysis, and sonophotocatalysis). as a photocatalyst, we used TiO2 immobilized on a non-woven fabric sheet. Crude oil and its water-soluble fractions were analyzed using GC-MS, 1H-NMR in a liquid state, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and fluorescence. The artificial oil aging induced significant modifications of oil composition with the formation of more oxidized species. All treatments used for the detoxification of polluted water samples, except sonolysis, showed a consistent reduction of organic content with the appearance of potentially toxic substances, confirming that the remediation processes experimented with cannot be applied in natural environments without a careful and repeated experimentation in controlled laboratory conditions.

Artificial Aging of Crude Oil and Water Remediation by AOPs

Laura Scrano
Conceptualization
;
Filomena Lelario
Investigation
;
Sabino Aurelio Bufo
Supervision
2022-01-01

Abstract

Crude oil in the environment is exposed to a series of weather-climatic factors (water, oxygen, solar irradiation) and microorganisms’ action that triggers chemical-physical processes of degradation (known as weathering). In a short time, the original composition of exposed oil can change significantly. In this work, our research team experimented with an Italian crude oil simulating solar irradiation to understand the modifications induced on its composition by artificial aging. Moreover, we studied the transformations deriving from different advanced oxidation processes (AOP) applied as remediation methods on liquid matrices contaminated by petroleum. For the last objective, we adopted different AOPs (photocatalysis, sonolysis, and sonophotocatalysis). as a photocatalyst, we used TiO2 immobilized on a non-woven fabric sheet. Crude oil and its water-soluble fractions were analyzed using GC-MS, 1H-NMR in a liquid state, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and fluorescence. The artificial oil aging induced significant modifications of oil composition with the formation of more oxidized species. All treatments used for the detoxification of polluted water samples, except sonolysis, showed a consistent reduction of organic content with the appearance of potentially toxic substances, confirming that the remediation processes experimented with cannot be applied in natural environments without a careful and repeated experimentation in controlled laboratory conditions.
File in questo prodotto:
File Dimensione Formato  
Abstract SCRANO et al. 15042022.pdf

accesso aperto

Descrizione: abstract
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 71.27 kB
Formato Adobe PDF
71.27 kB Adobe PDF Visualizza/Apri
Chemical Catalyst 2022_Book.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/155786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact