We present an unsteady simulation of an axial fan with low pressure and high flow rate, developed during the MinWaterCSP EU project, specifically designed and optimized for Concentrating Solar Power (CSP) plants with the aim of reducing water consumption at the condenser stage. An earlier version of the fan, referred as M-fan, was initially developed to serve the hybrid cooling system, to boost the overall heat transfer performance with dry cooling. In this work, we will performing a Computational Fluid Dynamics (CFD) analysis of the unsteady flow on a redesigned and scaled version of the M-fan, referred as T-fan, by The T-fan was designed and optimized to reduce noise emissions and improve efficiency with respect to the M-fan. We perform the simulation using an in-house built C++ parallel code for CFD analysis using Finite Elements (FE). We model the flow dynamics using the Residual Based Variational MultiScale method (RBVMS) to obtain a stabilized solution of the Navier-Stokes equation using FE discretization. We will discuss the simulation results of the RBVMS model by comparing our simulation of the T-fan with experimental results on the same fan.
Unsteady flow simulation of an axial fan for dry cooling in a csp plant using the variational multiscale method
Castorrini A.;
2020-01-01
Abstract
We present an unsteady simulation of an axial fan with low pressure and high flow rate, developed during the MinWaterCSP EU project, specifically designed and optimized for Concentrating Solar Power (CSP) plants with the aim of reducing water consumption at the condenser stage. An earlier version of the fan, referred as M-fan, was initially developed to serve the hybrid cooling system, to boost the overall heat transfer performance with dry cooling. In this work, we will performing a Computational Fluid Dynamics (CFD) analysis of the unsteady flow on a redesigned and scaled version of the M-fan, referred as T-fan, by The T-fan was designed and optimized to reduce noise emissions and improve efficiency with respect to the M-fan. We perform the simulation using an in-house built C++ parallel code for CFD analysis using Finite Elements (FE). We model the flow dynamics using the Residual Based Variational MultiScale method (RBVMS) to obtain a stabilized solution of the Navier-Stokes equation using FE discretization. We will discuss the simulation results of the RBVMS model by comparing our simulation of the T-fan with experimental results on the same fan.File | Dimensione | Formato | |
---|---|---|---|
GT2020-16057.pdf
non disponibili
Tipologia:
Pdf editoriale
Licenza:
DRM non definito
Dimensione
9.96 MB
Formato
Adobe PDF
|
9.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.