While robots are more and more deployed among people in public spaces, the impact of cyber-security attacks is significantly increasing. Most of consumer and professional robotic systems are affected by multiple vulnerabilities and the research in this field is just started. This paper addresses the problem of automatic detection of anomalous behaviors possibly coming from cyber-security attacks. The proposed solution is based on extracting system logs from a set of internal variables of a robotic system, on transforming such data into images, and on training different Autoencoder architectures to classify robot behaviors to detect anomalies. Experimental results in two different scenarios (autonomous boats and social robots) show effectiveness and general applicability of the proposed method.

A Comparative Analysis on the use of Autoencoders for Robot Security Anomaly Detection

Bloisi D.;
2019-01-01

Abstract

While robots are more and more deployed among people in public spaces, the impact of cyber-security attacks is significantly increasing. Most of consumer and professional robotic systems are affected by multiple vulnerabilities and the research in this field is just started. This paper addresses the problem of automatic detection of anomalous behaviors possibly coming from cyber-security attacks. The proposed solution is based on extracting system logs from a set of internal variables of a robotic system, on transforming such data into images, and on training different Autoencoder architectures to classify robot behaviors to detect anomalies. Experimental results in two different scenarios (autonomous boats and social robots) show effectiveness and general applicability of the proposed method.
2019
978-1-7281-4004-9
File in questo prodotto:
File Dimensione Formato  
10.1109-IROS40897-2019-8968105.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 11.04 MB
Formato Adobe PDF
11.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/145369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact