In this paper, we propose an automatic approach to group web pages that are similar at the content level. The approach uses the Levenshtein string edit distance and Latent Semantic Indexing to compute page dissimilarity and then groups them using iteratively a Graph-Theoretic clustering algorithm. To automate the clustering process a prototype has been implemented and used to assess the proposed approach on three web sites.

Towards Automatic Clustering of Similar Pages in Web Applications

SCANNIELLO, GIUSEPPE;
2009-01-01

Abstract

In this paper, we propose an automatic approach to group web pages that are similar at the content level. The approach uses the Levenshtein string edit distance and Latent Semantic Indexing to compute page dissimilarity and then groups them using iteratively a Graph-Theoretic clustering algorithm. To automate the clustering process a prototype has been implemented and used to assess the proposed approach on three web sites.
2009
9781424451241
File in questo prodotto:
File Dimensione Formato  
WSE_2009_CR.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 510.06 kB
Formato Adobe PDF
510.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/14520
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact